Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sedimentary Microbial Fuel Cells
2.2. Power Management System
2.3. Load System
2.4. Base Station System
2.5. System Tests and Calculations
2.5.1. Load Consumption Test
2.5.2. Voltage Capacitor Test
3. Results and Discussion
3.1. Sedimentary Microbial Fuel Cells
3.2. Load Consumption
3.3. Power Management System Operating Cycle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schievano, A.; Colombo, A.; Grattieri, M.; Trasatti, S.P.; Liberale, A.; Tremolada, P.; Pino, C.; Cristiani, P. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources 2017, 340, 80–88. [Google Scholar] [CrossRef]
- Dewan, A.; Ay, S.U.; Karim, M.N.; Beyenal, H. Alternative power sources for remote sensors: A review. J. Power Sources 2014, 245, 129–143. [Google Scholar] [CrossRef]
- Al-Rakhami, M.; Almowuena, S. Wireless Sensor Networks Security: State of the Art. arXiv 2018, arXiv:1808.05272. [Google Scholar] [CrossRef]
- Park, J.-D.; Lee, S. Single-transistor sub-1-V self-startup voltage boost energy harvesting system for microbial fuel cells. J. Power Sources 2019, 418, 90–97. [Google Scholar] [CrossRef]
- Ewing, T.; Ha, P.T.; Babauta, J.T.; Tang, N.T.; Heo, D.; Beyenal, H. Scale-up of sediment microbial fuel cells. J. Power Sources 2014, 272, 311–319. [Google Scholar] [CrossRef]
- Prasad, J.; Tripathi, R.K. Review on improving microbial fuel cell power management systems for consumer applications. Energy Rep. 2022, 8, 10418–10433. [Google Scholar] [CrossRef]
- Serra, P.M.D.; Espírito-Santo, A. Sourcing Power with Microbial Fuel Cells: A Timeline. J. Power Sources 2021, 482, 228921. [Google Scholar] [CrossRef]
- Alipanahi, R.; Rahimnejad, M.; Najafpour, G. Improvement of sediment microbial fuel cell performances by design and application of power management systems. Int. J. Hydrogen Energy 2019, 44, 16965–16975. [Google Scholar] [CrossRef]
- Strik, D.P.B.T.B.; Hamelers, H.V.M.; Snel, J.F.H.; Buisman, C.J.N. Green Electricity Production with Living Plants and Bacteria in a Fuel Cell. Int. J. Energy Res. 2008, 32, 870–876. [Google Scholar] [CrossRef]
- Helder, M.; Strik, D.; Hamelers, H.; Kuhn, A.J.; Blok, C.; Buisman, C. Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour. Technol. 2010, 101, 3541–3547. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.S.; Joo Kim, H.; Su Choi, Y.; Hak Chung, T. Electricity Production from Lake Sediment Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology. Bull. Korean Chem. Soc. 2008, 29, 2189–2194. [Google Scholar]
- Wetser, K.; Liu, J.; Buisman, C.; Strik, D. Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass-Bioenergy 2015, 83, 543–550. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, F.; Shimotori, T.; Wang, K.-C.; Huang, Y. Performance evaluation of power management systems in microbial fuel cell-based energy harvesting applications for driving small electronic devices. J. Power Sources 2012, 217, 65–71. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, T.-Y.; Chung, Y.-C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes. Environ. Technol. 2014, 35, 286–293. [Google Scholar] [CrossRef]
- Jacobsen, D.; Rostgaard, S.; Vásconez, J.J. Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshw. Biol. 2003, 48, 2025–2032. [Google Scholar] [CrossRef]
- Yamanaka, T.; Yamada, Y. Regional Assessment of Recharge Elevation of Tap Water Sources Using the Isoscape Approach. Mt. Res. Dev. 2017, 37, 198–205. [Google Scholar] [CrossRef]
- Meybeck, M.; Green, P.; Vörösmarty, C. A New Typology for Mountains and Other Relief Classes: An Application to Global Continental Water Resources and Population Distribution. Mt. Res. Dev. 2001, 21, 34–45. [Google Scholar] [CrossRef]
- Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell. Environ. Sci. Technol. 2008, 42, 8591–8596. [Google Scholar] [CrossRef]
- Donovan, C.; Dewan, A.; Peng, H.; Heo, D.; Beyenal, H. Power management system for a 2.5W remote sensor powered by a sediment microbial fuel cell. J. Power Sources 2011, 196, 1171–1177. [Google Scholar] [CrossRef]
- Zhang, F.; Tian, L.; He, Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources 2011, 196, 9568–9573. [Google Scholar] [CrossRef]
- Zhu, X.; Fu, Q.; Yang, R.; Zhang, Y. A High Power-Conversion-Efficiency Voltage Boost Converter with MPPT for Wireless Sensor Nodes. Sensors 2021, 21, 5447. [Google Scholar] [CrossRef] [PubMed]
- Ieropoulos, I.; Greenman, J.; Melhuish, C. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. Int. J. Energy Res. 2008, 32, 1228–1240. [Google Scholar] [CrossRef]
- Erable, B.; Lacroix, R.; Etcheverry, L.; Féron, D.; Delia, M.L.; Bergel, A. Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes. Bioresour. Technol. 2013, 142, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, T.; Lombardelli, G. Energy sustainability of Microbial Fuel Cell (MFC): A case study. J. Power Sources 2017, 356, 438–447. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayashi, T.; Iwasaki, H.; Awatsu, M.; Yokoyama, H. Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission. J. Power Sources 2019, 430, 1–11. [Google Scholar] [CrossRef]
- Ahmed, M.; Harbi, I.; Kennel, R.; Rodríguez, J.; Abdelrahem, M. Maximum Power Point Tracking-Based Model Predictive Control for Photovoltaic Systems: Investigation and New Perspective. Sensors 2022, 22, 3069. [Google Scholar] [CrossRef]
- Nguyen, C.-L.; Tartakovsky, B.; Woodward, L. Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power Management System. ACS Omega 2019, 4, 18978–18986. [Google Scholar] [CrossRef]
- Yeo, J.; Kim, T.; Jang, J.K.; Yang, Y. Practical Maximum-Power Extraction in Single Microbial Fuel Cell by Effective Delivery through Power Management System. Energies 2018, 11, 2312. [Google Scholar] [CrossRef]
- Logroño, W.; Pérez, M.; Urquizo, G.; Kadier, A.; Echeverría, M.; Recalde, C.; Rákhely, G. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 2017, 176, 378–388. [Google Scholar] [CrossRef]
- Recalde, C.; Aguay, D.; Pérez, M.; Fiallos, F.; Lopez, D.; Jaramillo, D.; García, V.J. Biohydrogen from activated sludge from textile wastewater treated with low doses of gamma radiation. Radiat. Phys. Chem. 2018, 153, 234–238. [Google Scholar] [CrossRef]
- Degrenne, N.; Boileau, M.; Morel, F.; Khaled, F.; Ondel, O.; Buret, F.; Allard, B. Association of Flyback Converters to Harvest Energy from Multiple Hydraulically Connected Biofuel Cells. In Proceedings of the 2012 IEEE International Conference on Green Computing and Communications, Besancon, France, 20–23 November 2012; pp. 664–667. [Google Scholar]
- Alaraj, M.; Park, J.-D. Net power positive maximum power point tracking energy harvesting system for microbial fuel cell. J. Power Sources 2019, 418, 225–232. [Google Scholar] [CrossRef]
- Degrenne, N.; Buret, F.; Allard, B.; Bevilacqua, P. Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load. J. Power Sources 2012, 205, 188–193. [Google Scholar] [CrossRef]
- Molognoni, D.; Puig, S.; Balaguer, M.D.; Liberale, A.; Capodaglio, A.G.; Callegari, A.; Colprim, J. Reducing start-up time and minimizing energy losses of Microbial Fuel Cells using Maximum Power Point Tracking strategy. J. Power Sources 2014, 269, 403–411. [Google Scholar] [CrossRef]
- Woodward, L.; Perrier, M.; Srinivasan, B.; Pinto, R.P.; Tartakovsky, B. Comparison of real-time methods for maximizing power output in microbial fuel cells. AIChE J. 2010, 56, 2742–2750. [Google Scholar] [CrossRef]
- Hidalgo, D.; Tommasi, T.; Velayutham, K.; Ruggeri, B. Long term testing of Microbial Fuel Cells: Comparison of different anode materials. Bioresour. Technol. 2016, 219, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Yan, Z.; Xu, H.; Yao, Z.; Wang, C.; Chen, M.; Zhao, Z.; Peng, Z.; Wang, C.; Jiang, H.-L. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total. Environ. 2019, 673, 272–280. [Google Scholar] [CrossRef]
- Wotawa-Bergen, A.Q.; Chadwick, D.B.; Richter, K.E.; Tender, L.M.; Reimers, C.E.; Gong, Y. Operational Testing of Sediment Microbial Fuel Cells in San Diego Bay. MTS/IEEE Seattle Ocean. 2010, 2010, 8–13. [Google Scholar] [CrossRef]
- Adami, S.E.; Degrenne, N.; Vollaire, C.; Allard, B.; Buret, F.; Costa, F. Autonomous Ultra-Low Power DC/DC Converter for Microbial Fuel Cells. In Proceedings of the 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut, Lebanon, 11–14 December 2011; pp. 398–401. [Google Scholar] [CrossRef]
- Degrenne, N.; Allard, B.; Buret, F.; Adami, S.-E.; Labrousse, D.; Vollaire, C.; Morel, F. A 140 mV Self-Starting 10 mW DC/DC Converter for Powering Low-Power Electronic Devices from Low-Voltage Microbial Fuel Cells. J. Low Power Electron. 2012, 8, 485–497. [Google Scholar] [CrossRef]
- Degrenne, N.; Allard, B.; Buret, F.; Morel, F.; Adami, S.E.; Labrousse, D. Comparison of 3 Self-Starting Step-up DC:DC Converter Topologies for Harvesting Energy from Low-Voltage and Low-Power Microbial Fuel Cells. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–10. [Google Scholar]
- Zhang, X.; Ren, H.; Pyo, S.; Lee, J.-I.; Kim, J.; Chae, J. A High-Efficiency DC–DC Boost Converter for a Miniaturized Microbial Fuel Cell. IEEE Trans. Power Electron. 2015, 30, 2041–2049. [Google Scholar] [CrossRef]
- Dallago, E.; Barnabei, A.L.; Liberale, A.; Torelli, G.; Venchi, G. A 300-mV Low-Power Management System for Energy Harvesting Applications. IEEE Trans. Power Electron. 2016, 31, 2273–2281. [Google Scholar] [CrossRef]
- Zhao, Q.; Ji, M.; Cao, H.; Li, Y. Recent Advances in Sediment Microbial Fuel Cells. In Proceedings of the 2020 5th International Conference on Renewable Energy and Environmental Protection, Shenzhen, China, 23–25 October 2020; Volume 621, p. 012010. [Google Scholar]
- Li, B.; Xu, D.; Feng, L.; Liu, Y.; Zhang, L. Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system. Environ. Pollut. 2022, 297, 118771. [Google Scholar] [CrossRef] [PubMed]
- Zabihallahpoor, A.; Rahimnejad, M.; Talebnia, F. Sediment microbial fuel cells as a new source of renewable and sustainable energy: Present status and future prospects. RSC Adv. 2015, 5, 94171–94183. [Google Scholar] [CrossRef]
- Gong, Y.; Radachowsky, S.E.; Wolf, M.; Nielsen, M.E.; Girguis, P.R.; Reimers, C.E. Benthic Microbial Fuel Cell as Direct Power Source for an Acoustic Modem and Seawater Oxygen/Temperature Sensor System. Environ. Sci. Technol. 2011, 45, 5047–5053. [Google Scholar] [CrossRef] [PubMed]
Device | Current, mA | Power, mW |
---|---|---|
Xbee transmission mode | 33.00 | 108.90 |
PIC 16f628a operative mode 4 MHZ 3.3 V | 0.60 | 1.98 |
ds18b20 sensor | 1.00 | 3.30 |
Resistors | 1.03 | 3.40 |
TOTAL | 35.63 | 117.58 |
Transmission | 1 | 2 | 3 | Average |
---|---|---|---|---|
Average power, mW | 93.65 | 93.22 | 93.28 | 93.38 |
Time, s | 1.73 | 1.74 | 1.72 | 1.73 |
Energy, mJ | 162.02 | 162.20 | 160.91 | 161.71 |
Converter | Cold-Start Boost Converter | Main Boost Charger |
---|---|---|
V1, V | 0.000 | 1.850 |
V2, V | 1.850 | 2.420 |
Time, h | 9.300 | 1.400 |
Escap, J | 1.200 | 0.850 |
Power, mW | 0.036 | 0.169 |
Transmission | 1 | 2 | 3 | 4 | Average |
---|---|---|---|---|---|
V1, V | 2.321 | 2.321 | 2.325 | 2.330 | 2.320 |
V2, V | 2.438 | 2.443 | 2.448 | 2.443 | 2.440 |
Time, min | 19.900 | 20.530 | 21.100 | 20.200 | 20.430 |
mJ | 194.880 | 203.420 | 205.480 | 188.770 | 198.140 |
mJ | 264.350 | 272.720 | 280.290 | 268.340 | 271.430 |
Efficiency, _bq25505 (%), Equation (5) | 73.720 | 74.590 | 73.310 | 70.350 | 73.000 |
Output voltage, V | 3.300 |
Input voltage, V | 0.236 |
Input power, mW | 0.221 |
Useful output power, mW | 162 |
Total efficiency, % | 59.6 |
Efficiency tps61200, % (Equation (6)) | 81.6 |
Efficiency bq25505, % (Equation (5)) | 73.0 |
Loses in tps61200, % | 13.4 |
Loses in bq25505, % | 27.0 |
PMS Topology | MFC Type | Voltage Input, V | Efficiency, % | Reference |
---|---|---|---|---|
Capacitor-boost converter | sedimentary | 0.400 | 55 | [38] |
Capacitor-transformer-boost converter | single chamber | 0.475 | 58 | [39] |
Capacitor-charge pump-boost converter | sedimentary | 0.052–0.320 | <70 | [18] |
Maximum power point tracking | single chamber | 0.300 | 73 | [40] |
Maximum power point tracking | single chamber | 0.300 | 67–81 | [41] |
Integrated circuit-based system | double chamber | 0.6–7 | <85 | [42] |
Capacitor-flyback-boost | single chamber | 0.300 | 55 | [43] |
Flyback-boost converter | chamber | 0.44 | 26 | [4] |
Integrated circuit-based system and quasi-MPPT | sedimentary | 0.236 | 59.6 | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recalde, C.; López, D.; Aguay, D.; García, V.J. Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells. Sensors 2023, 23, 2101. https://doi.org/10.3390/s23042101
Recalde C, López D, Aguay D, García VJ. Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells. Sensors. 2023; 23(4):2101. https://doi.org/10.3390/s23042101
Chicago/Turabian StyleRecalde, Celso, Denys López, Diana Aguay, and Víctor J. García. 2023. "Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells" Sensors 23, no. 4: 2101. https://doi.org/10.3390/s23042101
APA StyleRecalde, C., López, D., Aguay, D., & García, V. J. (2023). Environmental Sensing in High-Altitude Mountain Ecosystems Powered by Sedimentary Microbial Fuel Cells. Sensors, 23(4), 2101. https://doi.org/10.3390/s23042101