Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter?
Abstract
:1. Introduction
2. Wearable Devices for Diagnosis and Monitoring in CKD
2.1. Cardiovascular Parameters in CKD
2.2. Biochemistry and Electrolytes in CKD
2.3. Physical Activity in CKD
3. Wearable Dialysis Devices
3.1. Peritoneal Dialysis
3.2. Haemodialysis
4. Devices That May Improve Patient Care but Don’t Yet Exist
4.1. Physiological Biometrics
4.2. Laboratory Parameters
5. Challenges, Risks and Factors Associated with Successful Implementation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauss, M.; Floyd, L.; Becker, S.; Ponnusamy, A.; Woywodt, A. Opportunities in the cloud or pie in the sky? Current status and future perspectives of telemedicine in nephrology. Clin. Kidney J. 2021, 14, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Stauss, M.; Dhaygude, A.; Ponnusamy, A.; Myers, M.; Woywodt, A. Remote digital urinalysis with smartphone technology as part of remote management of glomerular disease during the SARS-CoV-2 virus pandemic: Single-centre experience in 25 patients. Clin. Kidney J. 2021, 15(5), 903–911. [Google Scholar] [CrossRef] [PubMed]
- Stauss, M.; Keevil, B.; Woywodt, A. Point-of-Care Testing: Home Is Where the Lab Is. Kidney360 2022, 3, 1285–1288. [Google Scholar] [CrossRef]
- Marshall, D.J.; Kim, J.J.; Brand, S.; Bryne, C.; Keevil, B.G. Assessment of tacrolimus and creatinine concentration collected using Mitra microsampling devices. Ann. Clin. Biochem. 2020, 57, 389–396. [Google Scholar] [CrossRef]
- Durand, P.-Y.; Verger, C. Evaluation of a new rapid-diagnostic test for peritonitis in peritoneal dialysis: The PERIPLEX device. Bull. Dial. Domic. 2020, 3, 127–137. [Google Scholar] [CrossRef]
- Pronovost, P.J.; Cole, M.D.; Hughes, R.M. Remote Patient Monitoring During COVID-19: An Unexpected Patient Safety Benefit. JAMA 2022, 327, 1125–1126. [Google Scholar] [CrossRef]
- Kang, H.S.; Exworthy, M. Wearing the Future-Wearables to Empower Users to Take Greater Responsibility for Their Health and Care: Scoping Review. JMIR mHealth uHealth 2022, 10, e35684. [Google Scholar] [CrossRef]
- Anikwe, C.V.; Nweke, H.F.; Ikegwu, A.C.; Egwuonwu, A.E.; Onu, F.U.; Alo, U.R.; Teh, Y.W. Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Syst. Appl. 2022, 202, 117362. [Google Scholar] [CrossRef]
- Kooman, J.P.; Wieringa, F.P.; Han, M.; Chaudhuri, S.; van der Sande, F.M.; Usvyat, L.A.; Kotanko, P. Wearable health devices and personal area networks: Can they improve outcomes in haemodialysis patients? Nephrol. Dial Transplant. 2020, 35 (Suppl. 2), ii43–ii50. [Google Scholar] [CrossRef]
- Pluymaekers, N.A.H.A.; Hermans, A.N.L.; van der Velden, R.M.J.; den Uijl, D.W.; Vorstermans, B.; Buskes, S.; Hendriks, J.M.; Vernooy, K.; Crijns, H.J.G.M.; Linz, D. On-demand app-based rate and rhythm monitoring to manage atrial fibrillation through teleconsultations during COVID-19. Int. J. Cardiol. Heart Vasc. 2020, 28, 100533. [Google Scholar] [CrossRef] [PubMed]
- Wieringa, F.P.; Kooman, J.P. Smart sensors for real-time monitoring of patients on dialysis. Nat. Rev. Nephrol. 2020, 16, 554–555. [Google Scholar] [CrossRef] [PubMed]
- Roy-Chaudhury, P.; Tumlin, J.A.; Koplan, B.A.; Costea, A.I.; Kher, V.; Williamson, D.; Pokhariyal, S.; Charytan, D.M.; Tumlin, J.; Reddy, V.; et al. Primary outcomes of the Monitoring in Dialysis Study indicate that clinically significant arrhythmias are common in hemodialysis patients and related to dialytic cycle. Kidney Int. 2018, 93, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Koplan, B.A.; Winkelmayer, W.C.; Costea, A.I.; Roy-Chaudhury, P.; Tumlin, J.A.; Kher, V.; Williamson, D.E.; Pokhariyal, S.; Charytan, D.M.; Williamson, D.; et al. Implantable Loop Recorder Monitoring and the Incidence of Previously Unrecognized Atrial Fibrillation in Patients on Hemodialysis. Kidney Int. Rep. 2022, 7, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Harmon, D.M.; Dugan, J.; Manka, L.; Lopez-Jimenez, F.; Lerman, A.; Siontis, K.C.; Noseworthy, P.A.; Yao, X.; Klavetter, E.W.; et al. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nat. Med. 2022, 28, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Pluymaekers, N.A.H.A.; Hermans, A.N.L.; van der Velden, R.M.J.; Gawałko, M.; den Uijl, D.W.; Buskes, S.; Vernooy, K.; Crijns, H.J.; Hendriks, J.M.; Linz, D. Implementation of an on-demand app-based heart rate and rhythm monitoring infrastructure for the management of atrial fibrillation through teleconsultation: TeleCheck-AF. Europace 2021, 23, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Proesmans, T.; Mortelmans, C.; Van Haelst, R.; Verbrugge, F.; Vandervoort, P.; Vaes, B. Mobile Phone-Based Use of the Photoplethysmography Technique to Detect Atrial Fibrillation in Primary Care: Diagnostic Accuracy Study of the FibriCheck App. JMIR mHealth uHealth 2019, 7, e12284. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Bittel, B.; Browsky, D.; Houghtaling, P.; Drummond, C.K.; Desai, M.Y.; Gilinov, A.M. Accuracy of Apple Watch for Detection of Atrial Fibrillation. Circulation 2020, 141, 702–703. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- Starr, J.A.; Pinner, N.A.; Mannis, M.; Stuart, M.K. A Review of Direct Oral Anticoagulants in Patients with Stage 5 or End-Stage Kidney Disease. Ann. Pharmacother. 2022, 56, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Duncker, D.; Ding, W.Y.; Etheridge, S.; Noseworthy, P.A.; Veltmann, C.; Yao, X.; Bunch, T.J.; Gupta, D. Smart Wearables for Cardiac Monitoring-Real-World Use beyond Atrial Fibrillation. Sensors 2021, 21(7), 2539. [Google Scholar] [CrossRef] [PubMed]
- Group KDIGOKBPW. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef] [PubMed]
- Nasothimiou, E.G.; Karpettas, N.; Dafni, M.G.; Stergiou, G.S. Patients’ preference for ambulatory versus home blood pressure monitoring. J. Hum. Hypertens. 2014, 28, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, D.; Zeng, X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed. Eng. Online 2017, 16, 23. [Google Scholar] [CrossRef] [Green Version]
- Wieringa, F.P.; Broers, N.J.H.; Kooman, J.P.; Van Der Sande, F.M.; Van Hoof, C. Wearable sensors: Can they benefit patients with chronic kidney disease? Expert Rev. Med. Devices 2017, 14, 505–519. [Google Scholar] [CrossRef]
- Pérez, D.; Orozco, J. Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Mikrochim. Acta 2022, 189, 127. [Google Scholar] [CrossRef]
- Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031–7038. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Hutter, T.; Collings, T.S.; Kostova, G.; Karet Frankl, F.E. Point-of-care and self-testing for potassium: Recent advances. Sens. Diagn. 2022, 1, 614–626. [Google Scholar] [CrossRef]
- Tanaka, A.; Utsunomiya, F.; Douseki, T. Wearable Self-Powered Diaper-Shaped Urinary-Incontinence Sensor Suppressing Response-Time Variation with 0.3 V Start-Up Converter. IEEE Sens. J. 2016, 16, 3472–3479. [Google Scholar] [CrossRef]
- Lee, Y.; Howe, C.; Mishra, S.; Lee, D.S.; Mahmood, M.; Piper, M.; Kim, Y.; Tieu, K.; Byun, H.S.; Coffey, J.P.; et al. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl. Acad. Sci. USA 2018, 115, 5377–5582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyein, H.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.C.; Ota, H.; Davis, R.W.; et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca(2+) and pH. ACS Nano 2016, 10, 7216–7224. [Google Scholar] [CrossRef] [Green Version]
- Vairo, D.; Bruzzese, L.; Marlinge, M.; Fuster, L.; Adjriou, N.; Kipson, N.; Brunet, P.; Cautela, J.; Jammes, Y.; Mottola, G.; et al. Towards Addressing the Body Electrolyte Environment via Sweat Analysis:Pilocarpine Iontophoresis Supports Assessment of Plasma Potassium Concentration. Sci. Rep. 2017, 7, 11801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klous, L.; de Ruiter, C.J.; Scherrer, S.; Gerrett, N.; Daanen, H.A.M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol. 2021, 121, 803–816. [Google Scholar] [CrossRef]
- Yang, W.; Han, W.; Gao, H.; Zhang, L.; Wang, S.; Xing, L.; Zhang, Y.; Xue, X. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis. Nanoscale 2018, 10, 2099–2107. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Parrilla, M.; Cuartero, M.; Padrell Sánchez, S.; Rajabi, M.; Roxhed, N.; Niklaus, F.; Crespo, G.A. Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection. Anal. Chem. 2019, 91, 1578–1586. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wu, G.; Weng, Z.; Sun, H.; Nistala, R.; Zhang, Y. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens. 2021, 6, 2181–2190. [Google Scholar] [CrossRef]
- Galloway, C.D.; Valys, A.V.; Shreibati, J.B.; Treiman, D.L.; Petterson, F.L.; Gundotra, V.P.; Albert, D.E.; Attia, Z.I.; Carter, R.E.; Asirvatham, S.J.; et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiol. 2019, 4, 428–436. [Google Scholar] [CrossRef]
- Urtnasan, E.; Lee, J.H.; Moon, B.; Lee, H.Y.; Lee, K.; Youk, H. Noninvasive Screening Tool for Hyperkalemia Using a Single-Lead Electrocardiogram and Deep Learning: Development and Usability Study. JMIR Med. Inform. 2022, 10, e34724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ren, Y.; Wang, H.; Bai, Y.; Huang, L. Daily Step Counts in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Observational Studies. Front. Med. 2022, 9, 842423. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Kumar, U.; Virgen, P.; Magallon, B.; Garimella, P.S.; Chopra, T.; Kotanko, P.; Ikizler, T.A.; Trzebinska, D.; Cadmus-Bertram, L.; et al. Physical activity in hemodialysis patients on nondialysis and dialysis days: Prospective observational study. Hemodial. Int. 2021, 25, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Nixon, A.C.; Bampouras, T.M.; Gooch, H.J.; Young, H.M.L.; Finlayson, K.W.; Pendleton, N.; Mitra, S.; Brady, M.E.; Dhaygude, A.P. The EX-FRAIL CKD trial: A study protocol for a pilot randomised controlled trial of a home-based EXercise programme for pre-frail and FRAIL, older adults with Chronic Kidney Disease. BMJ Open 2020, 10, e035344. [Google Scholar] [CrossRef]
- Nixon, A.C.; Bampouras, T.M.; Gooch, H.J.; Young, H.M.L.; Finlayson, K.W.; Pendleton, N.; Mitra, S.; Brady, M.E.; Dhaygude, A.P. Home-based exercise for people living with frailty and chronic kidney disease: A mixed-methods pilot randomised controlled trial. PLoS ONE 2021, 16, e0251652. [Google Scholar] [CrossRef] [PubMed]
- Annual Data Report USRDS. Available online: https://adr.usrds.org/2021/end-stage-renal-disease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities (accessed on 18 September 2022).
- Bello, A.K.; Levin, A.; Lunney, M.; Osman, M.A.; Ye, F.; Ashuntantang, G.E.; Bellorin-Font, E.; Gharbi, M.B.; Davison, S.N.; Ghnaimat, M.; et al. Status of care for end stage kidney disease in countries and regions worldwide: International cross sectional survey. BMJ 2019, 367, l5873. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.T.; Wallace, E.; Golper, T.A.; Rosner, M.H.; Seshasai, R.K.; Glickman, J.D.; Schreiber, M.; Gee, P.; Rocco, M.V. Exploring Barriers and Potential Solutions in Home Dialysis: An NKF-KDOQI Conference Outcomes Report. Am. J. Kidney Dis. 2019, 73, 363–371. [Google Scholar] [CrossRef]
- van Gelder, M.K.; Mihaila, S.M.; Jansen, J.; Wester, M.; Verhaar, M.C.; Joles, J.A.; Stamatialis, D.; Masereeuw, R.; Gerritsen, K.G. From portable dialysis to a bioengineered kidney. Expert Rev. Med. Devices 2018, 15, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Davenport, A. Portable and wearable dialysis devices for the treatment of patients with end-stage kidney failure: Wishful thinking or just over the horizon? Pediatr. Nephrol. 2015, 30, 2053–2060. [Google Scholar] [CrossRef] [Green Version]
- Foo, M.W.Y.; Htay, H. Innovations in peritoneal dialysis. Nat. Rev. Nephrol. 2020, 16, 548–549. [Google Scholar] [CrossRef]
- van Gelder, M.K.; Vollenbroek, J.C.; Lentferink, B.H.; Hazenbrink, D.H.M.; Besseling, P.J.; Simonis, F.; Giovanella, S.; Ligabue, G.; Bajo Rubio, M.A.; Cappelli, G.; et al. Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products. Artif. Organs. 2021, 45, 1422–1428. [Google Scholar] [CrossRef]
- Ronco, C.; Fecondini, L. The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purif. 2007, 25, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Bazaev, N. Wearable Artificial Kidney Renart-PD. Biomed. Eng. 2020, 54, 83–87. [Google Scholar] [CrossRef]
- Samuelsson, O.; Heijdenberg, L.; de Leon, C.; Meinander, N.; Persson, E.; Wramner, L. Peritoneal dialysis with the new portable Carry Life system. Nephrol. Dial. Transplant. 2018, 33, i621. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.-C.; Braide, M.; de Leon, C.; Persson, E.; Wramner, L. Peritoneal ultrafiltration with a stable glucose concentration using Carry Life UF system. Nephrol. Dial. Transplant. 2018, 33, i526. [Google Scholar] [CrossRef] [Green Version]
- Htay, H.; Gow, S.K.; Jayaballa, M.; Oei, E.L.; Chan, C.M.; Wu, S.Y.; Foo, M.W. Preliminary safety study of the Automated Wearable Artificial Kidney (AWAK) in Peritoneal Dialysis patients. Perit. Dial. Int. 2022, 42, 394–402. [Google Scholar] [CrossRef]
- Jain, A.; Brown, E.; Htay, H.; Pawlak, M.; Chirumarry, S.; Gadi, V.; Singh, S.; Lim, J.; Gow, S.; Chen, B.; et al. Application of an advanced ultrafiltration management system using AWAK sorbent-based peritoneal dialysis in a porcine model. Kidney Int. Rep. 2022, 7, S296–S297. [Google Scholar] [CrossRef]
- van Gelder, M.K.; de Vries, J.C.; Simonis, F.; Monninkhof, A.S.; Hazenbrink, D.H.M.; Ligabue, G.; Giovanella, S.; Joles, J.A.; Verhaar, M.C.; Bajo Rubio, M.A.; et al. Evaluation of a system for sorbent-assisted peritoneal dialysis in a uremic pig model. Physiol. Rep. 2020, 8, e14593. [Google Scholar] [CrossRef]
- Nanodialysis–Dialysis and Blood Purification. Available online: https://www.nanodialysis.nl (accessed on 14 September 2022).
- Castro, A.C.; Neri, M.; Nayak Karopadi, A.; Lorenzin, A.; Marchionna, N.; Ronco, C. Wearable artificial kidney and wearable ultrafiltration device vascular access-future directions. Clin. Kidney J. 2019, 12, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Heo, S.J.; Kim, M.; Lee, J.; Park, K.H.; Lee, G.; Baeg, S.I.; Kwon, Y.E.; Choi, H.M.; Oh, D.J.; et al. Deep Learning Model for Predicting Intradialytic Hypotension without Privacy Infringement: A Retrospective Two-Center Study. Front. Med. 2022, 9, 878858. [Google Scholar] [CrossRef]
- Davenport, A.; Gura, V.; Ronco, C.; Beizai, M.; Ezon, C.; Rambod, E. A wearable haemodialysis device for patients with end-stage renal failure: A pilot study. Lancet 2007, 370, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Gura, V.; Ronco, C.; Nalesso, F.; Brendolan, A.; Beizai, M.; Ezon, C.; Davenport, A.; Rambod, E. A wearable hemofilter for continuous ambulatory ultrafiltration. Kidney Int. 2008, 73, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gura, V.; Macy, A.S.; Beizai, M.; Ezon, C.; Golper, T.A. Technical breakthroughs in the wearable artificial kidney (WAK). Clin. J. Am. Soc. Nephrol. 2009, 4, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gura, V.; Rivara, M.B.; Bieber, S.; Munshi, R.; Smith, N.C.; Linke, L.; Kundzins, J.; Beizai, M.; Ezon, C.; Kessler, L.; et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 2016, 1(8), e86397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, S.C.; Lai, Y.S.; Kuo, K.L.; Tarng, D.C. Volume overload and adverse outcomes in chronic kidney disease: Clinical observational and animal studies. J. Am. Heart Assoc. 2015, 4(5), e001918. [Google Scholar] [CrossRef] [Green Version]
- Kidney Health Initiative. Fostering Innovation in Fluid Management. Available online: https://khi.asn-online.org/uploads/KHI_InnovationsInFluidManagement.pdf (accessed on 15 November 2022).
- Desai, A.S. Home monitoring heart failure care does not improve patient outcomes: Looking beyond telephone-based disease management. Circulation 2012, 125, 828–836. [Google Scholar] [CrossRef]
- Milan Manani, S.; Rosner, M.H.; Virzi, G.M.; Giuliani, A.; Berti, S.; Crepaldi, C.; Ronco, C. Longitudinal Experience with Remote Monitoring for Automated Peritoneal Dialysis Patients. Nephron 2019, 142, 1–9. [Google Scholar] [CrossRef]
- Fallahzadeh, R.; Pedram, M.; Ghasemzadeh, H. SmartSock: A wearable platform for context-aware assessment of ankle edema. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 6302–6306. [Google Scholar]
- Davies, S.J.; Davenport, A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014, 86, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Krzesinski, P.; Sobotnicki, A.; Gacek, A.; Siebert, J.; Walczak, A.; Murawski, P.; Gielerak, G. Noninvasive Bioimpedance Methods From the Viewpoint of Remote Monitoring in Heart Failure. JMIR mHealth uHealth 2021, 9, e25937. [Google Scholar] [CrossRef]
- Singhal, A.; Cowie, M.R. The Role of Wearables in Heart Failure. Curr. Heart Fail. Rep. 2020, 17, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Doan, A.D.; Ma, K.W.; Toth, J.A.; Geyen, K.J.; Otterness, S.; Chakravarthy, N.; Katra, R.P.; Libbus, I. Monitoring changes in fluid status with a wireless multisensor monitor: Results from the Fluid Removal During Adherent Renal Monitoring (FARM) study. Congest. Heart Fail. 2012, 18, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Schoutteten, M.K.; Vranken, J.; Lee, S.; Smeets, C.J.P.; De Cannière, H.; Van Hoof, C.; Peeters, J.; Groenendaal, W.; Vandervoort, P.M. Towards personalized fluid monitoring in haemodialysis patients: Thoracic bioimpedance signal shows strong correlation with fluid changes, a cohort study. BMC Nephrol. 2020, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.J.; Caskey, F.J.; Coyle, D.; Lindley, E.; Macdonald, J.; Mitra, S.; Wilkie, M.; Davenport, A.; Farrington, K.; Dasgupta, I.; et al. Rationale and design of BISTRO: A randomized controlled trial to determine whether bioimpedance spectroscopy-guided fluid management maintains residual kidney function in incident haemodialysis patients. BMC Nephrol. 2017, 18, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeboom, L.; Lee, S.; Wieringa, F.; Groenendaal, W.; Basile, C.; van der Sande, F.; Kooman, J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrol. Dial. Transplant. 2021, 37(11), 2048–2054. [Google Scholar] [CrossRef]
- Ebah, L.M.; Wiig, H.; Dawidowska, I.; O’Toole, C.; Summers, A.; Nikam, M.; Jayanti, A.; Coupes, B.; Brenchley, P.; Mitra, S. Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Kidney Int. 2013, 84, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Esparza, S.; Wu, D.; Hanudel, M.R.; Joung, H.A.; Gales, B.; Tseng, D.; Salusky, I.B.; Ozcan, A. Measurement of serum phosphate levels using a mobile sensor. Analyst 2020, 145, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22(4), 1620. [Google Scholar] [CrossRef]
- Kolluru, C.; Williams, M.; Yeh, J.S.; Noel, R.K.; Knaack, J.; Prausnitz, M.R. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed. Microdevices 2019, 21, 14. [Google Scholar] [CrossRef]
- Dauphin-Ducharme, P.; Yang, K.; Arroyo-Currás, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sens. 2019, 4, 2832–2837. [Google Scholar] [CrossRef]
- Niel, O.; Bastard, P.; Boussard, C.; Hogan, J.; Kwon, T.; Deschênes, G. Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr. Nephrol. 2018, 33, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.; Hopper, A.; Brophy, J.; Pearson, E.; Suthantirakumar, R.; Vankad, M.; Igharo, N.; Baitule, S.; Clark, C.C.; Arvanitis, T.N.; et al. Digitally enabled flash glucose monitoring for inpatients with COVID-19: Feasibility and pilot implementation in a teaching NHS Hospital in the UK. Digit. Health 2022, 8, 20552076211059350. [Google Scholar] [CrossRef] [PubMed]
- Smeets, C.J.P.; Lee, S.; Groenendaal, W.; Squillace, G.; Vranken, J.; De Cannière, H.; van Hoof, C.; Grieten, L.; Mullens, W.; Nijst, P.; et al. The Added Value of In-Hospital Tracking of the Efficacy of Decongestion Therapy and Prognostic Value of a Wearable Thoracic Impedance Sensor in Acutely Decompensated Heart Failure with Volume Overload: Prospective Cohort Study. JMIR Cardio 2020, 4, e12141. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.T.; Riveros, C.; Ravaud, P. Patients’ views of wearable devices and AI in healthcare: Findings from the ComPaRe e-cohort. NPJ Digit. Med. 2019, 2, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesser, A.; Burke, A.; Reyes, J.; Rohrberg, T. Navigating the digital divide: A systematic review of eHealth literacy in underserved populations in the United States. Inform. Health Soc. Care 2016, 41, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dagher, L.; Nedunchezhian, S.; El Hajjar, A.H.; Zhang, Y.; Deffer Jr, O.; Russell, A.; Pottle, C.; Marrouche, N. A cardiovascular clinic patients’ survey to assess challenges and opportunities of digital health adoption during the COVID-19 pandemic. Cardiovasc. Digit. Health J. 2022, 3, 31–39. [Google Scholar] [CrossRef]
- Lyles, C.R.; Sharma, A.E.; Fields, J.D.; Getachew, Y.; Sarkar, U.; Zephyrin, L. Centering Health Equity in Telemedicine. Ann. Fam. Med. 2022, 20, 362–367. [Google Scholar] [CrossRef]
- Azodo, I.; Williams, R.; Sheikh, A.; Cresswell, K. Opportunities and Challenges Surrounding the Use of Data From Wearable Sensor Devices in Health Care: Qualitative Interview Study. J. Med. Internet Res. 2020, 22, e19542. [Google Scholar] [CrossRef]
- Bonderud, D. Wearable Tech in Healthcare: Possibilities and Pitfalls. HealthTec 2021. Available online: https://healthtechmagazine.net/article/2021/04/wearable-tech-healthcare-possibilities-and-pitfalls-perfcon (accessed on 15 November 2022).
- Leclercq, C.; Witt, H.; Hindricks, G.; Katra, R.P.; Albert, D.; Belliger, A.; Cowie, M.R.; Deneke, T.; Friedman, P.; Haschemi, M.; et al. Wearables, telemedicine, and artificial intelligence in arrhythmias and heart failure: Proceedings of the European Society of Cardiology Cardiovascular Round Table. Europace 2022, 24, 1372–1383. [Google Scholar] [CrossRef]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. npj Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef]
Clearly defined problem |
Integrated system of healthcare delivery |
Technology support |
Personalized experience |
Enhanced end user experience |
Aligned payment and reimbursement models |
Clinician champions |
Concerns around patient privacy |
Digital divide |
Access for patients with special needs, disabilities or where a language barrier exists |
Information governance |
Integration into existing electronic health records |
Use of patient identifiable information on external i.e., company websites |
Vulnerability to cyber attack |
Large data volumes |
Patient and clinician buy in, technology fatigue |
Financial sustainability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stauss, M.; Htay, H.; Kooman, J.P.; Lindsay, T.; Woywodt, A. Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? Sensors 2023, 23, 1361. https://doi.org/10.3390/s23031361
Stauss M, Htay H, Kooman JP, Lindsay T, Woywodt A. Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? Sensors. 2023; 23(3):1361. https://doi.org/10.3390/s23031361
Chicago/Turabian StyleStauss, Madelena, Htay Htay, Jeroen P. Kooman, Thomas Lindsay, and Alexander Woywodt. 2023. "Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter?" Sensors 23, no. 3: 1361. https://doi.org/10.3390/s23031361
APA StyleStauss, M., Htay, H., Kooman, J. P., Lindsay, T., & Woywodt, A. (2023). Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? Sensors, 23(3), 1361. https://doi.org/10.3390/s23031361