A Review of Gas Measurement Practices and Sensors for Tunnels
Abstract
:1. Introduction
2. Types of Sensors
2.1. NDIR Sensors
2.2. Electrochemical Sensors
2.3. Comparison between Sensors
2.4. Sensor Calibration
3. Gas Measurement in Tunnels
Gas Measurement for Ventilation Indoors
4. Discussion and Future Developments
5. Conclusions
- -
- A mixture of pollutant gases emitted by traffic accumulates inside tunnels, leading to a deterioration of indoor and outdoor air quality, with harmful consequences for health and the structural integrity.
- -
- Real-time monitoring with accurate measurements requires an efficient sensor system to provide continuous data readings to control the use of the ventilation system, without raising operational costs.
- -
- Environmental conditions, mainly temperature, relative humidity and gas mix, influence the reading of the sensors, causing measurement deviations regardless of the detection method. Periodic recalibration of the sensors becomes essential to maintain error-free monitoring.
- -
- MOS-type sensors have high sensitivity, but their lifetime and high operating temperature lead to high operating costs. New electrochemical sensors can cover the main needs, but they are still under development and would not be effective for a real application.
- -
- Optic sensors are the most widely available on the market, with a broad range of value for money in relation to the operational needs, with a useful life of above 10 years. Many types of NDIR sensors have been developed with the proliferation of applications for domestic use, reducing the cost of this type of sensor.
- -
- A network of low-cost NDIR sensors which are linked together take all other ambient and traffic factors into consideration. Periodic recalibration and processing of (the) data will allow for an efficient ventilation system, optimising the available resources in the tunnel management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Pavón, R.; Alvarez, A.; Alberti, M. Possibilities of BIM-FM for the Management of COVID in Public Buildings. Sustainability 2020, 12, 9974. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.K.; Mustafi, N.N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew. Sustain. Energy Rev. 2020, 137, 110624. [Google Scholar] [CrossRef]
- Warneke, C.; McKeen, S.A.; de Gouw, J.; Goldan, P.D.; Kuster, W.C.; Holloway, J.S.; Williams, E.J.; Lerner, B.; Parrish, D.D.; Trainer, M.; et al. Determination of urban volatile organic compound emission ratios and comparison with an emissions database. J. Geophys. Res. Atmos. 2007, 112, 10–47. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, D.; Sun, J.; Wang, Y.; Yao, D.; Zhao, S.; Yu, X.; Zeng, L.; Zhang, R.; Zhang, H.; et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Sci. Total Environ. 2019, 695, 133889. [Google Scholar] [CrossRef]
- Blanco-Alegre, C.; Calvo, A.; Alves, C.; Fialho, P.; Nunes, T.; Gomes, J.; Castro, A.; Oduber, F.; Coz, E.; Fraile, R. Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Sci. Total Environ. 2019, 703, 135483. [Google Scholar] [CrossRef]
- Li, X.; Dallmann, T.R.; May, A.; Stanier, C.O.; Grieshop, A.P.; Lipsky, E.M.; Robinson, A.; Presto, A.A. Size distribution of vehicle emitted primary particles measured in a traffic tunnel. Atmos. Environ. 2018, 191, 9–18. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Liu, W.; Ji, Z.; Ji, X.; Shi, Z.; Yuan, J.; Li, Y. Pollutant concentration measurement and emission factor analysis of highway tunnel with mainly HGVs in mountainous area. Tunn. Undergr. Space Technol. 2020, 106, 103591. [Google Scholar] [CrossRef]
- Li, X.; Dallmann, T.R.; May, A.A.; Presto, A.A. Seasonal and Long-Term Trend of on-Road Gasoline and Diesel Vehicle Emission Factors Measured in Traffic Tunnels. Appl. Sci. 2020, 10, 2458. [Google Scholar] [CrossRef]
- Pierson, W.R.; Gertler, A.W.; Robinson, N.F.; Sagebiel, J.C.; Zielinska, B.; Bishop, G.; Stedman, D.H.; Zweidinger, R.B.; Ray, W.D. Real-world automotive emissions—Summary of studies in the Fort McHenry and Tuscarora mountain tunnels. Atmos. Environ. 1996, 30, 2233–2256. [Google Scholar] [CrossRef]
- Mancilla, Y.; Araizaga, A.E.; Mendoza, A. A tunnel study to estimate emission factors from mobile sources in Monterrey, Mexico. J. Air Waste Manag. Assoc. 2012, 62, 1431–1442. [Google Scholar] [CrossRef] [Green Version]
- Pio, C.; Mirante, F.; Oliveira, C.; Matos, M.; Caseiro, A.; Oliveira, C.; Querol, X.; Alves, C.; Martins, N.; Cerqueira, M.; et al. Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. Atmos. Environ. 2013, 71, 15–25. [Google Scholar] [CrossRef]
- Fang, X.; Wu, L.; Zhang, Q.; Zhang, J.; Wang, A.; Zhang, Y.; Zhao, J.; Mao, H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement. Transp. Res. Part D Transp. Environ. 2018, 67, 674–684. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Gamberini, R. Roadway tunnels: A critical review of air pollutant concentrations and vehicular emissions. Transp. Res. Part D Transp. Environ. 2020, 86, 102478. [Google Scholar] [CrossRef]
- Abajo, L.L.-D.; Gálvez, J.C.; Alberti, M.G. Simulación del proceso de carbonatación del hormigón en túneles urbanos. In Proceedings of the XVIII Congreso de Control de Calidad en la Construcción, Brasilia, Brazil, 19–21 October 2021. [Google Scholar] [CrossRef]
- Liu, B.; Zimmerman, N. Fleet-Based Vehicle Emission Factors Using Low-Cost Sensors: Case Study in Parking Garages. In Transportation Research Part D: Transport and Environment; Elsevier: Amsterdam, The Netherlands, 2021; Volume 91, Available online: https://www.sciencedirect.com/science/article/pii/S1361920920308208 (accessed on 4 November 2022).
- Jin, B.; Zhu, R.; Mei, H.; Wang, M.; Zu, L.; Yu, S.; Zhang, R.; Li, S.; Bao, X. Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation. Environ. Res. 2021, 200, 111463. [Google Scholar] [CrossRef]
- MITECO, TEC/1146/2018 Madrid: Instrucción Técnica Complementaria 04.7.06. Control de Gases Tóxicos en la Atmósfera de las Actividades Subterráneas. 2018. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2018-14894 (accessed on 22 July 2022).
- Zhang, Z.; Zhang, H.; Tan, Y.; Yang, H. Natural wind utilization in the vertical shaft of a super-long highway tunnel and its energy saving effect. Build. Environ. 2018, 145, 140–152. [Google Scholar] [CrossRef]
- Guo, C.; Wang, M.; Yang, L.; Sun, Z.; Zhang, Y.; Xu, J. A review of energy consumption and saving in extra-long tunnel operation ventilation in China. Renew. Sustain. Energy Rev. 2016, 53, 1558–1569. [Google Scholar] [CrossRef]
- Liu, R.; He, Y.; Zhao, Y.; Jiang, X.; Ren, S. Tunnel construction ventilation frequency-control based on radial basis function neural network. Autom. Constr. 2020, 118, 103293. [Google Scholar] [CrossRef]
- Al-Chalabi, H.S. Life cycle cost analysis of the ventilation system in Stockholm’s road tunnels. J. Qual. Maint. Eng. 2018, 24, 358–375. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Xu, J.; Yang, L.; Guo, X.; Zhang, Y.; Wang, M. Energy-Saving Network Ventilation Technology of Extra-Long Tunnel in Climate Separation Zone. Appl. Sci. 2017, 7, 454. [Google Scholar] [CrossRef] [Green Version]
- Sohi, P.A.; Kahrizi, M. Low-Voltage Gas Field Ionization Tunneling Sensor Using Silicon Nanostructures. IEEE Sens. J. 2018, 18, 6092–6096. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Sun, L.; Zhang, Q.; Mao, H. Emissions of volatile organic compounds (VOCs) from gasoline- and liquified natural gas (LNG)-fueled vehicles in tunnel studies. Atmos. Environ. 2020, 234, 117626. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Ambedkar, A.K.; Chaudhary, M.; Singh, B.P. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324. [Google Scholar] [CrossRef]
- Kalyakin, A.; Volkov, A.; Dunyushkina, L. Solid-Electrolyte Amperometric Sensor for Simultaneous Measurement of CO and CO2 in Nitrogen. Appl. Sci. 2022, 12, 4515. [Google Scholar] [CrossRef]
- Mulmi, S.; Thangadurai, V. Editors’ Choice—Review—Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications. J. Electrochem. Soc. 2020, 167, 037567. [Google Scholar] [CrossRef]
- Müller, M.; Graf, P.; Meyer, J.; Pentina, A.; Brunner, D.; Perez-Cruz, F.; Hüglin, C.; Emmenegger, L. Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland. Atmos. Meas. Tech. 2020, 13, 3815–3834. [Google Scholar] [CrossRef]
- Carotenuto, F.; Gualtieri, G.; Miglietta, F.; Riccio, A.; Toscano, P.; Wohlfahrt, G.; Gioli, B. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling. Environ. Monit. Assess. 2018, 190, 1–15. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Niu, C.; Zhou, J.; Liu, Y.; Bai, Z.; Zhang, J.; He, F.; Zhang, N. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. J. Environ. Sci. 2012, 24, 657–664. [Google Scholar] [CrossRef]
- Borodinecs, A.; Palcikovskis, A.; Jacnevs, V. Indoor Air CO2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements. Energies 2022, 15, 6961. [Google Scholar] [CrossRef]
- Operating Principle—MOS-Type Gas Sensor. Available online: https://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html (accessed on 4 November 2022).
- Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U. The measurement of dissolved and gaseous carbon dioxide concentration. Meas. Sci. Technol. 2011, 22, 072001. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef]
- Ng, D.K.T.; Ho, C.P.; Xu, L.; Chen, W.; Fu, Y.H.; Zhang, T.; Siow, L.Y.; Jaafar, N.; Ng, E.J.; Gao, Y.; et al. NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detector. Sens. Actuators B Chem. 2021, 346, 130437. [Google Scholar] [CrossRef]
- Jha, R.K. Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2021, 22, 6–15. [Google Scholar] [CrossRef]
- Ye, W.; Tu, Z.; Xiao, X.; Simeone, A.; Yan, J.; Wu, T.; Wu, F.; Zheng, C.; Tittel, F.K. A NDIR Mid-Infrared Methane Sensor with a Compact Pentahedron Gas-Cell. Sensors 2020, 20, 5461. [Google Scholar] [CrossRef]
- Hsu, K.-C.; Fang, T.-H.; Hsiao, Y.-J.; Chan, C.-A. Highly response CO2 gas sensor based on Au-La2O3 doped SnO2 nanofibers. Mater. Lett. 2020, 261, 127144. [Google Scholar] [CrossRef]
- Akram, M.M.; Nikfarjam, A.; Hajghassem, H.; Ramezannezhad, M.; Iraj, M. Low cost and miniaturized NDIR system for CO2 detection applications. Sens. Rev. 2020, 40, 637–646. [Google Scholar] [CrossRef]
- Vafaei, M.; Amini, A.; Siadatan, A. Breakthrough in CO2 Measurement With a Chamberless NDIR Optical Gas Sensor. IEEE Trans. Instrum. Meas. 2019, 69, 2258–2268. [Google Scholar] [CrossRef]
- Willa, C.; Schmid, A.; Briand, D.; Yuan, J.; Koziej, D. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study. ACS Appl Mater Interfaces 2017, 9, 25553–25558. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Roels, J.; Baets, R.; Roelkens, G. A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip. Sensors 2021, 21, 5347. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.; Udrea, F. Towards Integrated Mid-Infrared Gas Sensors. Sensors 2019, 19, 2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemitis, J.; Bogdanovics, R.; Bogdanovica, S. The Study of CO2 Concentration in A Classroom During The Covid-19 Safety Measures. E3S Web Conf. 2021, 246, 01004. [Google Scholar] [CrossRef]
- Arzoumanian, E.; Vogel, F.R.; Bastos, A.; Gaynullin, B.; Laurent, O.; Ramonet, M.; Ciais, P. Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas. Atmos. Meas. Tech. 2019, 12, 2665–2677. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Silva, M.; Canha, N.; Freitas, M.; Dung, H.; Dionísio, I. Air pollution at an urban traffic tunnel in Lisbon, Portugal—An INAA study. Appl. Radiat. Isot. 2011, 69, 1586–1591. [Google Scholar] [CrossRef]
- Molina, A.; Escobar-Barrios, V.; Oliva, J. A review on hybrid and flexible CO2 gas sensors. Synth. Met. 2020, 270, 116602. [Google Scholar] [CrossRef]
- Hammad, A.B.A.; Elnahrawy, A.M.; Youssef, A.M. Sol gel synthesis of hybrid chitosan/calcium aluminosilicate nanocomposite membranes and its application as support for CO2 sensor. Int. J. Biol. Macromol. 2018, 125, 503–509. [Google Scholar] [CrossRef]
- Fasching, R.; Kohl, F.; Urban, G. A miniaturized amperometric CO2 sensor based on dissociation of copper complexes. Sens. Actuators B Chem. 2003, 93, 197–204. [Google Scholar] [CrossRef]
- Decker, M.; Oelßner, W.; Zosel, J. Chapter 4—Electrochemical CO2 Sensors with Liquid or Pasty Electrolyte. In Carbon Dioxide Sensing: Fundamentals, Principles, and Applications; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 87–116. [Google Scholar] [CrossRef]
- Tebizi-Tighilt, F.-Z.; Zane, F.; Belhaneche-Bensemra, N.; Belhousse, S.; Sam, S.; Gabouze, N.-E. Electrochemical gas sensors based on polypyrrole-porous silicon. Appl. Surf. Sci. 2013, 269, 180–183. [Google Scholar] [CrossRef]
- Triana, Y.; Ogata, G.; Einaga, Y. Application of boron doped diamond electrodes to electrochemical gas sensor. Curr. Opin. Electrochem. 2022, 36, 101113. [Google Scholar] [CrossRef]
- Gómez, J.C.; Pelegri-Sebastia, J.; Lajara, R. Circuit Topologies for MOS-Type Gas Sensor. Electronics 2020, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Hayat, A.; Marty, J.L. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483. [Google Scholar] [CrossRef]
- Dwivedi, D.; Srivastava, S. Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide. Sens. Actuators B Chem. 2000, 71, 161–168. [Google Scholar] [CrossRef]
- Gancarz, M.; Malaga-Toboła, U.; Oniszczuk, A.; Tabor, S.; Oniszczuk, T.; Gawrysiak-Witulska, M.; Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food Bioprod. Process. 2021, 127, 90–98. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, E.; Sakai, G.; Shimanoe, K.; Kanmura, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B Chem. 2001, 77, 72–77. [Google Scholar] [CrossRef]
- Struzik, M.; Garbayo, I.; Pfenninger, R.; Rupp, J.L.M. A Simple and Fast Electrochemical CO2 Sensor Based on Li7La3Zr2O12for Environmental Monitoring. Adv. Mater. 2018, 30, e1804098. [Google Scholar] [CrossRef]
- Yoon, H.J.; Jun, D.H.; Yang, J.H.; Zhou, Z.; Yang, S.S.; Cheng, M.M.-C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 2011, 157, 310–313. [Google Scholar] [CrossRef]
- Gheorghe, A.; Lugier, O.; Ye, B.; Tanase, S. Metal–organic framework based systems for CO2 sensing. J. Mater. Chem. C 2021, 9, 16132–16142. [Google Scholar] [CrossRef]
- Ye, B.; Gheorghe, A.; van Hal, R.; Zevenbergen, M.; Tanase, S. CO2 sensing under ambient conditions using metal–organic frameworks. Mol. Syst. Des. Eng. 2020, 5, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Guo, X.; Du, B.; Hu, X.; Yang, X.; He, Y.; Zhou, Y.; Zang, Z. Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J. Mater. Chem. C 2021, 9, 4838–4846. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Chopra, S.; McGuire, K.; Gothard, N.; Rao, A.M.; Pham, A. Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 2003, 83, 2280–2282. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors. Chemelectrochem 2017, 5, 6–19. [Google Scholar] [CrossRef]
- Yang, X.-L.; Ding, C.; Guan, R.-F.; Zhang, W.-H.; Feng, Y.; Xie, M.-H. Selective dual detection of H2S and Cu2+ by a post-modified MOF sensor following a tandem process. J. Hazard. Mater. 2020, 403, 123698. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Du, X.-M.; Zhao, B.; Li, Y.; Ruan, W.-J. A white-light-emitting single MOF sensor-based array for berberine homologue discrimination. J. Mater. Chem. C 2019, 8, 1433–1439. [Google Scholar] [CrossRef]
- Tanase, S.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Mathonière, C.; Jubera, V.; Smits, J.M.M.; de Gelder, R. A facile building-block synthesis of multifunctional lanthanide MOFs. J. Mater. Chem. 2011, 21, 15544–15551. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Yuan, T.; Fan, Y.; Wang, L.; Duan, Z.; Du, W.; Zhang, D.; Xu, J. A benzene vapor sensor based on a metal-organic framework-modified quartz crystal microbalance. Sens. Actuators B Chem. 2020, 311, 127365. [Google Scholar] [CrossRef]
- Strauss, I.; Mundstock, A.; Treger, M.; Lange, K.; Hwang, S.; Chmelik, C.; Rusch, P.; Bigall, N.C.; Pichler, T.; Shiozawa, H.; et al. Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing. ACS Appl. Mater. Interfaces 2019, 11, 14175–14181. [Google Scholar] [CrossRef] [Green Version]
- Chong, X.; Zhang, Y.; Li, E.; Kim, K.-J.; Ohodnicki, P.R.; Chang, C.-H.; Wang, A.X. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing. ACS Sens. 2018, 3, 230–238. [Google Scholar] [CrossRef]
- Kim, H.-T.; Hwang, W.; Liu, Y.; Yu, M. Ultracompact gas sensor with metal-organic-framework-based differential fiber-optic Fabry-Perot nanocavities. Opt. Express 2020, 28, 29937–29947. [Google Scholar] [CrossRef]
- Dmello, M.E.; Sundaram, N.G.; Kalidindi, S.B. Assembly of ZIF-67 Metal-Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO2 Gas Sensing. Chem. Eur. J. 2018, 24, 9220–9223. [Google Scholar] [CrossRef]
- Yuan, H.; Tao, J.; Li, N.; Karmakar, A.; Tang, C.; Cai, H.; Pennycook, S.J.; Singh, N.; Zhao, D. On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angew. Chem. Int. Ed. 2019, 58, 14089–14094. [Google Scholar] [CrossRef]
- Gustafson, J.A.; Wilmer, C.E. Optimizing information content in MOF sensor arrays for analyzing methane-air mixtures. Sens. Actuators B Chem. 2018, 267, 483–493. [Google Scholar] [CrossRef]
- Gassensmith, J.J.; Kim, J.Y.; Holcroft, J.M.; Farha, O.K.; Stoddart, J.F.; Hupp, J.T.; Jeong, N.C. A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide. J. Am. Chem. Soc. 2014, 136, 8277–8282. [Google Scholar] [CrossRef]
- Zhan, Z.; Jia, Y.; Li, D.; Zhang, X.; Hu, M. A water-stable terbium-MOF sensor for the selective, sensitive, and recyclable detection of Al3+ and CO32− ions. Dalton Trans. 2019, 48, 15255–15262. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.; Tan, K.; Lustig, W.P.; Kilin, D.; Li, J.; Chabal, Y.J.; Thonhauser, T. Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. J. Mater. Chem. C 2019, 7, 2625–2632. [Google Scholar] [CrossRef]
- Chocarro-Ruiz, B.; Pérez-Carvajal, J.; Avci, C.; Calvo-Lozano, O.; Alonso, M.I.; Maspoch, D.; Lechuga, L.M. A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles. J. Mater. Chem. A 2018, 6, 13171–13177. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [Google Scholar] [CrossRef] [Green Version]
- Fisk, W.J.; Sullivan, D.P.; Faulkner, D.; Eliseeva, E. CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010; Available online: https://escholarship.org/uc/item/4bk4x479 (accessed on 22 July 2022).
- Kamionka, M.; Breuil, P.; Pijolat, C. Calibration of a multivariate gas sensing device for atmospheric pollution measurement. Sens. Actuators B Chem. 2006, 118, 323–327. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Thiele, L. On-the-fly calibration of low-cost gas sensors. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7158 LNCS, pp. 228–244. [Google Scholar] [CrossRef]
- Vafaei, M.; Amini, A. Chamberless NDIR CO2 Sensor Robust against Environmental Fluctuations. ACS Sens. 2021, 6, 1536–1542. [Google Scholar] [CrossRef]
- Ait-Helal, W.; Beeldens, A.; Boonen, E.; Borbon, A.; Boréave, A.; Cazaunau, M.; Chen, H.; Daële, V.; Dupart, Y.; Gaimoz, C.; et al. On-road measurements of NMVOCs and NOx: Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center. Atmos. Environ. 2015, 122, 799–807. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H.; Rosland, P. The effect of salting with magnesium chloride on the concentration of particular matter in a road tunnel. Atmos. Environ. 2008, 42, 1762–1776. [Google Scholar] [CrossRef]
- Allen, J.O.; Mayo, P.R.; Hughes, L.S.; Salmon, L.G.; Cass, G.R. Emissions of Size-Segregated Aerosols from On-Road Vehicles in the Caldecott Tunnel. Environ. Sci. Technol. 2001, 35, 4189–4197. [Google Scholar] [CrossRef]
- Alves, C.A.; Gomes, J.; Nunes, T.; Duarte, M.; Calvo, A.; Custódio, D.; Pio, C.; Karanasiou, A.; Querol, X. Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos. Res. 2015, 153, 134–144. [Google Scholar] [CrossRef]
- Ameur-Bouddabbous, I.; Kasperek, J.; Barbier, A.; Harel, F.; Hannoyer, B. Transverse approach between real world concentrations of SO2, NO2, BTEX, aldehyde emissions and corrosion in the Grand Mare tunnel. J. Environ. Sci. 2012, 24, 1240–1250. [Google Scholar] [CrossRef]
- Barrefors, G.; Petersson, G. Volatile hazardous hydrocarbons in a Scandinavian urban road tunnel. Chemosphere 1992, 25, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Bozlaker, A.; Spada, N.J.; Fraser, M.P.; Chellam, S. Elemental Characterization of PM2.5 and PM10 Emitted from Light Duty Vehicles in the Washburn Tunnel of Houston, Texas: Release of Rhodium, Palladium, And Platinum. Environ. Sci. Technol. 2013, 48, 54–62. [Google Scholar] [CrossRef]
- Chan, L.; Zeng, L.; Qin, Y.; Lee, S. CO concentration inside the Cross Harbor Tunnel in Hong Kong. Environ. Int. 1996, 22, 405–409. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, potential source, and fingerprinting metal ratio. Atmos. Meas. Tech. 2015, 15, 4117–4130. [Google Scholar] [CrossRef] [Green Version]
- Chirico, R.; Prevot, A.S.; DeCarlo, P.F.; Heringa, M.F.; Richter, R.; Weingartner, E.; Baltensperger, U. Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation. Atmos. Environ. 2011, 45, 2182–2192. [Google Scholar] [CrossRef]
- Demir, T.; Yenisoy-Karakaş, S.; Karakaş, D. PAHs, elemental and organic carbons in a highway tunnel atmosphere and road dust: Discrimination of diesel and gasoline emissions. Build. Environ. 2019, 160, 106166. [Google Scholar] [CrossRef]
- De Fré, R.; Bruynseraede, P.; Kretzschmar, J.G. Air pollution measurements in traffic tunnels. Environ. Health Perspect. 1994, 102, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Gaga, E.O.; Arı, A.; Akyol, N.; Üzmez, Ö.Ö.; Kara, M.; Chow, J.C.; Watson, J.G.; Özel, E.; Döğeroğlu, T.; Odabasi, M. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Sci. Total Environ. 2018, 643, 1285–1296. [Google Scholar] [CrossRef]
- Grieshop, A.P.; Lipsky, E.M.; Pekney, N.J.; Takahama, S.; Robinson, A.L. Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season. Atmos. Environ. 2006, 40, 287–298. [Google Scholar] [CrossRef]
- Handler, M.; Puls, C.; Zbiral, J.; Marr, I.; Puxbaum, H.; Limbeck, A. Size and composition of particulate emissions from motor vehicles in the Kaisermühlen-Tunnel, Vienna. Atmos. Environ. 2008, 42, 2173–2186. [Google Scholar] [CrossRef]
- Kristensson, A.; Johansson, C.; Westerholm, R.; Swietlicki, E.; Gidhagen, L.; Wideqvist, U.; Vesely, V. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmos. Environ. 2004, 38, 657–673. [Google Scholar] [CrossRef]
- Li, R.; Meng, Y.; Fu, H.; Zhang, L.; Ye, X.; Chen, J. Characteristics of the pollutant emissions in a tunnel of Shanghai on a weekday. J. Environ. Sci. 2018, 71, 136–149. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Yu, N.; Zhang, C.; Wang, S.; Ma, L.; Zhao, J.; Lohmann, R. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere 2015, 134, 52–59. [Google Scholar] [CrossRef]
- Ma, C.-J.; Tohno, S.; Kasahara, M. A case study of the single and size-resolved particles in roadway tunnel in Seoul, Korea. Atmos. Environ. 2004, 38, 6673–6677. [Google Scholar] [CrossRef]
- Riccio, A.; Chianese, E.; Monaco, D.; Costagliola, M.; Perretta, G.; Prati, M.; Agrillo, G.; Esposito, A.; Gasbarra, D.; Shindler, L.; et al. Real-world automotive particulate matter and PAH emission factors and profile concentrations: Results from an urban tunnel experiment in Naples, Italy. Atmos. Environ. 2016, 141, 379–387. [Google Scholar] [CrossRef]
- Simmons, W.; Seakins, P. Estimations of primary nitrogen dioxide exhaust emissions from chemiluminescence NOx measurements in a UK road tunnel. Sci. Total Environ. 2012, 438, 248–259. [Google Scholar] [CrossRef]
- Song, C.; Ma, C.; Zhang, Y.; Wang, T.; Wu, L.; Wang, P.; Liu, Y.; Li, Q.; Zhang, J.; Dai, Q.; et al. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China. Sci. Total Environ. 2018, 637–638, 431–442. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Touaty, M.; Bonsang, B. Hydrocarbon emissions in a highway tunnel in the Paris area. Atmos. Environ. 2000, 34, 985–996. [Google Scholar] [CrossRef]
- Vasconcellos, P.C.; Carvalho, L.R.F.; Pool, C.S. Volatile organic compounds inside urban tunnels of São Paulo City, Brazil. J. Braz. Chem. Soc. 2005, 16, 1210–1216. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, X.; Yu, L.; Deng, T. Field measurements of the environmental parameter and pollutant dispersion in urban undersea road tunnel. Build. Environ. 2019, 149, 100–108. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Fang, X.; Liu, M.; Zhang, J.; Shao, M.; Lu, S.; Mao, H. Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Sci. Total Environ. 2017, 624, 878–886. [Google Scholar] [CrossRef]
- Kurtenbach, R.; Becker, K.; Gomes, J.; Kleffmann, J.; Lörzer, J.; Spittler, M.; Wiesen, P.; Ackermann, R.; Geyer, A.; Platt, U. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 2001, 35, 3385–3394. [Google Scholar] [CrossRef]
- Bari, S.; Naser, J. Simulation of airflow and pollution levels caused by severe traffic jam in a road tunnel. Tunn. Undergr. Space Technol. 2010, 25, 70–77. [Google Scholar] [CrossRef]
- Pang, Z.; Hu, P.; Lu, X.; Wang, Q.; O’Neill, Z.; Bueno, B.; Sepúlveda, A.; Maurer, C.; Wacker, S.; Kuhn, T.E.; et al. A Smart CO2-Based Ventilation Control Framework to Minimize the Infection Risk of COVID-19 in Public Buildings. 2021. Available online: https://www.researchgate.net/profile/Zhihong-Pang/publication/349121056_A_Smart_CO2-Based_Ventilation_Control_Framework_to_Minimize_the_Infection_Risk_of_COVID-19_In_Public_Buildings/links/6021a8c4458515893990132f/A-Smart-CO2-Based-Ventilation-Control-Framework-to-Minimize-the-Infection-Risk-of-COVID-19-In-Public-Buildings.pdf (accessed on 19 August 2022).
- Blad, T.; Nijssen, J.; Broeren, F.; Boogaard, B.; Lampaert, S.; Toorn, S.V.D.; Dobbelsteen, J.V.D. A Rapidly Deployable Test Suite for Respiratory Protective Devices in the COVID-19 Pandemic. Appl. Biosaf. 2020, 25, 161–168. [Google Scholar] [CrossRef]
- Tipparaju, V.V.; Mora, S.J.; Yu, J.; Tsow, F.; Xian, X. Wearable Transcutaneous CO₂ Monitor Based on Miniaturized Nondispersive Infrared Sensor. IEEE Sens. J. 2021, 21, 17327–17334. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, P.-H.; Chen, J.-K.; Su, T.-C. Recommendations for ventilation of indoor spaces to reduce COVID-19 transmission. J. Formos. Med. Assoc. 2021, 120, 2055–2060. [Google Scholar] [CrossRef]
- Hou, D.; Katal, A.; Wang, L.; Professor, A. Bayesian Calibration of Using CO2 Sensors to Assess Ventilation Conditions and Associated COVID-19 Airborne Aerosol Transmission Risk in Schools. medRxiv 2021. [Google Scholar] [CrossRef]
- Virbulis, J.; Sjomkane, M.; Surovovs, M.; Jakovics, A. Numerical Model for Prediction of Indoor COVID-19 Infection Risk Based on Sensor Data. J. Phys. Conf. Ser. 2021, 2069, 12189. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Kodio, O.; Cohen, A.E.; Khan, K.; Gu, Z.; Bush, J.W. Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19. Flow 2021, 1, E10. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Kim, Y.I.; Lee, W.-S. Development of CO2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost. Energies 2022, 15, 3232. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.; Shakir, M.; Shafi, U.; Malik, M.; Haque, A.; Mumtaz, S.; Zaidi, S. Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electronics 2021, 10, 184. [Google Scholar] [CrossRef]
- Li, B.; Cai, W. A novel CO2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in the indoor environment. Build. Environ. 2022, 219, 109232. [Google Scholar] [CrossRef]
- Bouguera, T.; Diouris, J.-F.; Chaillout, J.-J.; Jaouadi, R.; Andrieux, G. Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN. Sensors 2018, 18, 2104. [Google Scholar] [CrossRef]
Parameter | Type of Gas Sensors | ||
---|---|---|---|
Semiconductor | Electrochemical | Infrared Absorption | |
Sensitivity | E | G | E |
Accuracy | G | G | E |
Selectivity | P | G | E |
Response time | E | P | P |
Stability | G | B | G |
Durability | G | P | E |
Maintenance | E | G | P |
Cost | E | G | P |
Portable instrument | E | P | B |
E: excellent, G: good, P: poor, B: bad |
Infrastructure Name | Ref. |
---|---|
Annie Cordy Tunnel. Tunnel in Brussels city centre, Belgium | [95] |
Strømsås Tunnel. Road tunnel in Drammen, Norway | [96] |
Caldecott Tunnel. Tunnel in San Francisco Bay, California | [97] |
Urban traffic tunnels in Lisbon, Portugal | [98] |
Liberdade Avenue Tunnel (Braga, Portugal) | [46] |
Grand Mare Tunnel. Road tunnel located in Rouen, France | [99] |
Tingstad Tunnel. City tunnel in Gothenburg, Sweden | [100] |
Washburn Tunnel. Urban tunnel in Houston, Texas | [101] |
Cross Harbour Tunnel. Underwater urban tunnel in Hong Kong, China | [102] |
Hsuehshan Tunnel. Road tunnel on the Taipei-Yilan Freeway, Taiwan | [103] |
Gubrist tunnel. Highway tunnel in Zurich, Switzerland | [104] |
Craeybeckx Tunnel. Highway tunnel in Antwerp, Belgium | [105] |
Mount Bolu Tunnel. Highway tunnel in Turkey | [106] |
Osmaganzi Tunnel. Highway tunnel located in Bilecik, Turkey | [107] |
Highway tunnel in Pittsburgh, Pennsylvania | [108] |
Kaisermühlen Tunnel. Urban tunnel in Vienna, Austria | [109] |
Söderleds Tunnel. Urban tunnel in Stockholm, Sweden | [110] |
Túneles de carretera en Pittsburgh, Pennsylvania | [8] |
Xiangyin Tunnel. Urban tunnel in Shanghai, China | [111] |
Yan’an East Road Tunnel. Urban tunnel in the centre of Shanghai, China | [112] |
Buk-Ak Tunnel. Highway tunnel in Seoul, Korea | [113] |
Loma Larga Tunnel. Highway tunnel located in Monterrey, Mexico | [12] |
Fort McHenry Tunnel. Highway tunnel in Maryland | [11] |
Tuscarora Tunnel. Highway tunnel in Pennsylvania | [11] |
Marquês de Pombal Tunnel. Urban tunnel in Lisbon, Portugal | [13] |
‘4 Giornate’ Tunnel. Urban tunnel in Naples, Italy | [114] |
Westgate Tunnel. Leeds urban tunnel, United Kingdom | [115] |
Wujinglu Tunnel. Urban tunnel in Tianjin, China | [116] |
Tingstad Tunnel and Lundby Tunnel. Urban tunnels in Gothenburg, Sweden | [117] |
Thiais Tunnel. Highway tunnel in Paris, Francia | [118] |
Urban tunnels in Sao Paulo, Brasil | [119] |
Xiamen XiangAn Tunnel. Undersea tunnel in China | [120] |
Mountain tunnel in Nanjing, China | [121] |
Kiesberg Tunnel. Highway tunnel located between Düsseldorf and Wuppertal | [122] |
Domain Tunnel and Burnley Tunnel. Urban tunnels en Melbourne, Australia | [123] |
Issue | NDIR Sensors | Electrochemical Sensors |
---|---|---|
review | [29,33,35,36,37,38,39,44,46] | [29,35,50,56,58,60,61,62,65,69,71,72,73,76,86,89] |
domestic applications | [32,33,37,40,42,43,45,88,91,125,126,128,129,130,131,132,133] | [66,67,68,82,83,84,88] |
industrial applications | [4,35,41,91,94] | [25,28,41,51,52,53,54,55,59,63,64,70,74,75,77,78,79,80,81,85,87] |
infrastructure | [4,7,9,10,11,12,13,14,15,17,22,90,98,104,113,116,120,122] | [15,55] |
environment | [5,6,9,30,31,35,48,93,94] | [5,6,27,55,57,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cepa, J.J.; Pavón, R.M.; Caramés, P.; Alberti, M.G. A Review of Gas Measurement Practices and Sensors for Tunnels. Sensors 2023, 23, 1090. https://doi.org/10.3390/s23031090
Cepa JJ, Pavón RM, Caramés P, Alberti MG. A Review of Gas Measurement Practices and Sensors for Tunnels. Sensors. 2023; 23(3):1090. https://doi.org/10.3390/s23031090
Chicago/Turabian StyleCepa, Jorge J., Rubén M. Pavón, Paloma Caramés, and Marcos G. Alberti. 2023. "A Review of Gas Measurement Practices and Sensors for Tunnels" Sensors 23, no. 3: 1090. https://doi.org/10.3390/s23031090