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Abstract: Metal Oxide Semiconductor or MOS-type gas sensors are resistive sensors which can detect
different reducible or volatile gases in atmospheres with oxygen. These gas sensors have been used in
different areas such as food and drink industries or healthcare, among others. In this type of sensor,
the resistance value changes when it detects certain types of gases. Due to the electrical characteristics,
the sensors need a conditioning circuit to transform and acquire the data. Four different electronic
topologies, two different MOS-type gas sensors, and different concentrations of a gas substance are
presented and compared in this paper. The study and experimental analysis of the properties of each
of the designed topology allows designers to make a choice of the best circuit for a specific application
depending on the situation, considering the required power, noise, linearity, and number of sensors
to be used. This study will give more freedom of choice, the more adequate electronic conditioning
topology for different applications where MOS-type sensors are used, obtaining the best accuracy.
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1. Introduction

Metal Oxide Semiconductor or MOS-Type gas sensors are a type of sensors that can detect presence
of some volatile, oxidizable or reducible substances in an oxygen environment. In recent years, these
sensors have been used in different study areas like healthcare [1,2] or food industry [3], among others.
These sensors are resistive sensors whose nominal resistance changes with the presence of different
fuels, oxidizing gases or reducing gases [4,5].

This type of sensor has many advantages such as a high response, low cost and portability. Due to
these characteristics, different fabrication processes of MOS-Type gas sensors have been studied to
improve their sensitivity, power consumption, and response time [6–9]. Other studies have researched
into the applications in fields like the Internet of Things (IoT) devices [10] and wearables [11] by using
different techniques of power supply, such as triboelectric nano-generator (TENG) [12], and others.

With these types of sensors, a voltage divider [13,14] is often used to measure the substance
searched for. But other electronic topologies could be used to power resistive sensors. In this work,
besides a voltage divider, the Wheatstone bridge, the Anderson loop, and a resistance-to-frequency
converter were designed to be used with different MOS-Type gas sensors and compared among
them. The difference of these MOS gas sensors from others resistive sensors (as platinum resistance
temperature sensor or thermistors) are: they use a heater in the same sensor (need to work high
temperatures), and the range of the variable resistance is higher than others.

In this article, TGS2600 [15] and TGS2610 [16] sensors are used, whose sensing material is tin
dioxide (SnO2), because SnO2 is a very popular sensing material in this area [17]. In addition, both
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sensors have similar heaters onto the reverse side of the substrate, which is made of RuO2 [15,16].
However, their bases are different: TGS2600 has a Ni-plated steel sensor base [15], whereas TGS2610
sensor base is made of NiCu-plated steel [16]. Moreover, another difference between both sensors is
the long-term stability (Figure S1 and S2 in the Supplementary Materials). TGS2610 is very stable but
TGS2600 has a worst long-term stability.

2. Materials and Methods

This section deals with the design of different electronic conditioner topologies to maximize the
accuracy of MOS-type gas sensor applications. The analysis and simulated results for the different
topology are discussed.

The voltage divider and the Wheatstone bridge are the most commonly used topologies for
measurement systems based on resistive sensors because they are easy to design and easy to get data
from [4].

The Anderson loop is more difficult to design because a current source and an active voltage
subtractor are needed, as shown in Figure 1. However, unlike the voltage divider and the Wheatstone
bridge, the output signal for this topology changes linearly with the sensor resistance. Furthermore,
the Anderson loop can be easily designed for an array of resistive sensors [18–20].
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The resistance-to-frequency converter is the most complex topology we are going to study in this
paper. This topology is based on the use of a simulated capacitance using a Generalized Impedance
Converter (GIC). The capacitance changes linearly with the sensor resistance; an oscillator is created
using a 555 timer with a frequency that depends on the simulated capacitance [21]. This topology
theoretically has a linear dependence between the sensor resistance and the oscillator frequency, like
the Anderson loop. But it has several advantages due to the fact of using frequency: it is more immune
to noise (but it has a lower Spurious-Free Dynamic Range (SFDR), the transmission distance can be
higher, and it could be acquired by digital system without an Analog to Digital Converter (ADC).

The interface to obtain data from these designs is the Red-Pitaya STEMlab 125-14, which has 14-bit
ADC, with an input voltage range from −20 V to 20 V. Furthermore, the sample rate is 125 MS/s [22].
Thanks to these characteristics, this acquisition board can be used with all topologies described above
(Figure S3 and S4 in the Supplementary Materials).

2.1. Voltage Divider and Wheatstone Bridge

The voltage divider was designed as indicated in the datasheet [15] and [16] for TGS2600 and
TGS2610, respectively. Both datasheets indicate that the load resistance of the voltage divider should
be greater than 0.45 kΩ. Another important thing to consider when choosing this resistance was the
sensor resistance when detect clean air. In this case, this resistance can be from 10 kΩ to until 100 kΩ,
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it is a big range. For this reason, if the load resistance is close to 100 kΩ and the sensor has a sensor
resistance with clean air close to 10 kΩ, the output signal change is going to be small when the sensor
resistance changes and that made the resolution of the measure will be worst. Consequently, the load
resistance should be close to the small values of that range. Finally, the chosen load resistance is 10 kΩ
because this is suitable for both sensors when measuring clean air.

The Wheatstone bridge is based on the voltage divider, Figure 2. Unfortunately, with these sensors
is difficult to make a balanced bridge, because although the same model is used, the resistance of two
identical sensors can have a high variation. For example, a sensor TGS2600 can have a resistance of 10
kΩ when measuring clean air and another TGS2600 can have 90 kΩ in the same conditions. Due to
this reason, the Wheatstone bridge has two 10 kΩ resistors and a 100 kΩ potentiometer, which will be
regulated at the beginning of each measurement as a calibration step.
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2.2. Anderson Loop

The electronic system based on the Anderson loop needs a current source, which is designed
taking advantage of the following characteristic of the GIC: the current flowing through R5 resistor in
Figure 3 is the same current that flows through R4. And, if all passive components are resistors and the
voltage Vcc [23,24].

A current of 0.1 mA is selected for this design because the maximum power supported by the
chosen sensors is 15 mW and the maximum resistance of the sensors is around 100 kΩ [13,14].

Once the current source is designed, the next step is to create an active subtractor by using
instrumentation amplifiers. In this case, unlike the Anderson loop, the differential voltage of the
reference resistance is not subtracted from the differential voltage of the sensor resistance; in this
design, the differential voltage of the sensor resistance is subtracted from the differential voltage of the
reference resistors, as Figure 4 shows. For this reason, the sensors have maximum resistance when
measuring clean air, and in this way, a negative voltage is not needed [25]. The R3 value must have a
high value to assure good efficiency between the upper operational amplifier output current and the
current source [24], with that, we selected R3 with a resistance value of 47 kΩ, this is because is close
to the maximum value of the resistance sensor. In the other hand, R1 and R2 have been modified to
achieve, in the lower values of the range, a properly behavior of the GIC, and these values are 3.3 kΩ
to both. Finally, it is only necessary to create a non-inverter amplifier with a gain between 1 to 4.5,
which is controlled by a potentiometer in the position of R9 in the circuit, and the resistance selected is
R8 = 1 kΩ and the potentiometer R9 = 3.5 kΩ.
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2.3. Converter Resistance-to-Frequency

The last topology was proposed in [21], and it is based on the simulation of a capacitance using
the Generalize Impedance Converter. In addition, a 555 timer is used in a stable mode to obtain a
signal whose frequency changes linearly with the sensor resistance [26].

In [21], the sensor resistance range is between 500 Ω and 30 kΩ, but the range is wider in in this
proposal, from 500 Ω to 100 kΩ. Due to this, some changes in the topology were introduced. On one
hand, the capacitor C3 of the Figure 5 changes its place for the resistance R5, and to grow their values
until 33 nF and 15 kΩ; this change does not affect to the theoretical behavior of the GIC [27], but the
maximum voltage drop is only 3 V in the worst case. On the other hand, our design has higher voltages
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than the voltages used in the original paper; this is due to two reasons: the first reason is that the
change in the resistance range of the sensor increases the voltage needed; and the second reason is
that in [21] a microcontroller PSoC was used simulating a timer 555, with power voltage level of 3.3 V,
whereas in our design a 555 timer integrated circuit [26] is used with a minimum power voltage of 5 V.
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Figure 5. Design of the paper in which is based the design of the converter resistance-to-frequency [21].

There was a calibration process when 30 resistors with different values where selected. Then, the
different circuits were activated with these resistors and 5 V in order to make them stable in terms
of temperature. A 4-wires measure was taken for each resistor and each circuit. With these data, the
output characteristic (voltage or frequency) vs. Rsensor can be compared with the theoretical value.

If we consider the resistance-to-frequency circuit in Figure 6, the output frequency vs. capacitance
is shown in Figure 7, where we can see that the output frequency does not change linearly with the sensor
resistance along a wide range, but it still can be used taking into account this particularity. In the range
of the sensor resistance, from 500 Ω (CGIC ≈ 52.89nF) to 40 kΩ (CGIC ≈ 0.657nF), frequency changes
linearly with the sensor resistance, but if the resistance is bigger than 40 kΩ this behavior changes.
Moreover, it shows that, when the capacitance simulated by the GIC is lower than 0.65 nF and the sensor
resistance is smaller than 40 kΩ, the change of the frequency regards the change of the capacitance
simulated by the GIC has an hyperbolic function, and given that CGIC = 0.394417/(Rsensor ∗ 15000),
Figure 7 confirms the behavior of the output frequency explained above.
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2.4. Methods

The output voltage was measured using a Red-Pitaya STEMlab 125-14 [22] board, whose operative
system and Field Programmable Gate Array (FPGA) program were modified to use it as a data
acquisition card using the project made by Nils Roos [28]. The board sends all data through a TCP-IP
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connection, to a computer that saves all data in a file using a LabVIEW program. The experimental
setup of electronics is shown in Figure 8 and the frontal panel is shown in Figure 9.
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The substance to be detected was absolute ethanol of Scharlau, whose density is 0.79 g/cm3 in
water, and dissolutions with different concentrations were applied; from 500 ppm to 6000 ppm. Each
sample contained 2 cm3 of one dissolution in a vial, where the sensor was placed. All the measures
were taken at temperatures from 296 to 297 ◦K. This temperature was measured using a thermocouple
type K and a digital thermometer TES-1302.

Typical curves obtained in the acquisition system are shown in Figure 10 for illustrative purposes;
in this case, the condition circuit was the voltage divider, and the sensor was the TGS2600, with
different concentrations of ethanol.
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Figure 10. Voltage output for the voltage divider design with the sensor TGS2600.

Measures were taken following this procedure (Figure S5 in the Supplementary Materials): firstly,
a measure of clean air is obtained to take a voltage reference. Secondly, the dissolution sample is
measured, in this step two characteristics of the measure were considered: the rising edge of the
voltage, and the voltage value when it is stable. The last step is to measure clean air again. All sensors
had been working previously at least 24 h because they need to be warmed up before being used.

One of the characteristics measured in the voltage divider, Wheatstone bridge and Anderson loop
designs was the slew rate when the sensor starts to measure the sample. The voltage rise transition is
approximated to two lines, whose slopes are calculated as follow: the first one from t = 0 and instant
when voltage is 60% of the stable value; and the second one from 60% to 90%, as shown in Figure 11.
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Figure 11. How slopes are measured.

The characteristic measured in the resistance-to-frequency converter design is the main frequency
of the output signal. For this reason, a Fast Fourier Transform (FFT) of the data was calculated to obtain
the main frequency component. The steps followed for these measures are the same as explained
previously (Figure S5 in the Supplementary Materials).
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3. Results

Figure 12 shows the values when the sensor is stable with the TGS 2600. Although all measures
are in the same graph, the resistance-to-frequency converter design uses the right vertical scale (output
signal frequency) whereas the other three plots use the vertical left scale (output voltage).
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Figure 12 confirms that all designs can be used to measure different concentrations of ethanol in
the air, but there are other characteristics to consider, such as the signal noise. This characteristic is
measured when the voltage output is stable. In case of the voltage divider and the Anderson loop, the
noise is considered as the floor noise of the ADC, but in the Wheatstone bridge the noise is greater
than in the others.

Another characteristic of the output signal from the voltage divider, Wheatstone bridge, and
Anderson loop designs is the rising edge modeled as two lines, as explained previously. Figures 13
and 14 proves that the value of the first slope can be used to know the ethanol concentration in the air
in the three designs. The second slope can only be used for the voltage divider and for Wheatstone
bridge designs, but not for the others because of the lack of monotonicity.
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The last characteristic considered is the power consumption of each design. The power consumed
by the Wheatstone bridge and voltage divider is very small and similar in our circuits because of
our experimental setup: both designs share components in the same Printed Circuit Board (PCB).
Moreover, it had the lowest power consumption of all the designs, 2.28 mW maximum by voltage
divider and 4.56 mW maximum by Wheatstone bridge. Others designs have active electronics, and
this increases the power consumption. In the Anderson loop, the current source, this design has the
higher power consumption (114.91 mW at most), but it allows to use the same current for some sensors
in array configuration, Table 1. The consumption of the resistive-to-frequency design is in a middle
point (41.85 mW).

Table 1. Comparison of obtained data.

Type Power Noise Linearity Array

Voltage Divider 2.28 mW 80 dB No No
Wheatstone Bridge 4.56 mW 55 dB No No

Anderson loop 114.91 mW 80 dB Yes Yes
Converter resistance-to-frequency 41.85 mW 42.5 dB Rs < 40 kΩ No

Results were repeated for the sensor TGS2610 and results similar to sensor TGS2600 were obtained,
as Figures 15–17 show that.
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The acquisition system behavior does not depend on the gas used in the measure, but it only
depends on the electronic used (sensors, operational amplifiers, among others). For this reason,
measuring other gases is not relevant from the point of view of the electronic conditioning, only the
sensor, and it does not affect the results.

Finally, an equation, which models the behavior of each measurement system, is found (Figure
S6 and S7 in the Supplementary Materials). The method to obtain this is a fitting process by using
functions fit() and fittype() in MATLAB; it was tested a polynomic, logarithmic and exponential fitting
with different orders. After different combinations, the best results were obtained by using a polynomic
division, with the coefficient of determination (R-Squared) shown in Table 2. This fact confirms that all
systems analyzed in this paper can be used to measure different concentrations of ethanol in the air.
These models follow two types of equations:

• Whether the output voltage changes linearly with respect to the sensor resistance (Anderson loop
and Converter resistance-to-frequency when the sensor resistance is under 40 kΩ [when TGS2610
is used]), their model has an equation such as Equation (1).

• However, if the system has not these characteristics (voltage divider and Wheatstone bridge),
their equations correspond to (2).

out =
p2R2

sen + p1Rsen + p0

R2
sen + q1Rsen + q0

(1)

out =
p3R3

sen + p2R2
sen + p1Rsen + p0

R3
sen + q2R2

sen + q1Rsen + q0
(2)

Table 2. Coefficient of determination of model of each system.

R2 Voltage Divider Wheatstone Bridge Anderson Loop Converter
Resistance-to-Frequency

TGS2600 0.999981 0.996644 0.999854 0.999379
TGS2610 0.999989 0.999841 0.999542 0.999999

The coefficients px and qx for each equation are shown in Table 3.

Table 3. Coefficient of determination of model of each system.

Coefficients
Voltage Divider

[p0,p1,p2,p3]
[q0, q1, q2]

Wheatstone
Bridge

[p0,p1,p2,p3]
[q0, q1, q2]

Anderson Loop
[p0,p1,p2]

[q0, q1]

Converter
Resistance-to-Frequency

[p0,p1,p2]
[q0, q1]

p TGS2610 [2.483, 204.5, 3.067,
0.549]

[2.342, −125.7,
298.5, −0.433]

[4.203, −4.34 × 104],
−4.75 × 105] [−227.9, 5.7 × 107,6.6 × 109]

q TGS2610 [617.4, −1.844, 0.865] [1369, 61.32, 12.57] [−8975, −5.3*106] [4930, 3.9 × 105]

p TGS2600 [4.389,
957.5,8.028,0.908]

[3.068, −122.8,
245.5, −1.113] [3.038, −22.6, 0.296] [0.559, 2669, −1.486, 1.292]

q TGS2600 [611, −18.15, 0.789] [440, 83.91, 12.4] [86.83, 0.728] [324.2, 17.69, 0.105]

4. Conclusions

Each circuit has benefits and drawbacks that the designer should consider. The voltage divider
is the topology with less power consumption, and the noise is small enough to obtain good results.
This makes this topology the best option to implement in a portable device. Furthermore, as it does
not need the rising edge but only the voltage level, the frequency sampling can be much lower. The
Wheatstone bridge is very difficult to implement using this type of sensor due to the big sensors’
nominal resistance variability. For this reason, this topology is not recommended. The Anderson loop
has some strengths: the output voltage linearly depends on the resistance sensor; and in case of the
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design presented in this paper, the resistance range is quite high, from 10 kΩ up to 90 kΩ, which makes
it useful for these sensors and others with lower ranges; and finally, it can be easily redesigned to have
more than one sensor. However, this design has the higher power consumption, and it needs at least
two different voltage sources. For this reason this topology is only recommended when the system
is permanently connected to the power source, or for sensor arrays. The last topology presented is
GIC-based. This is recommended when the voltage output cannot be measured with a good ADC
because it provides a digital output which can be measured easily using a timer/counter.
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