A Capacitive Ice-Sensor Based on Graphene Nano-Platelets Strips
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNP Strips Fabrication and Characterization
- (i)
- Graphene nano-platelets (GNPs) are produced through the thermal expansion and liquid exfoliation of an affordable graphitic precursor, namely intercalated expandable graphite.
- (ii)
- A blend is created by dispersing GNPs in either acetone or an aqueous solution, employing magnetic stirring, and concluding with a sonication step. If a polymeric binder is included, it is introduced during the sonication phase. In terms of mechanical properties, polyurethane (utilized in this study) or epoxy are identified as suitable binders for the objectives of this research.
- (iii)
- The mixture is then sprayed at a controlled pressure (using the semiautomatic 3-axes pantograph Computer Numeric Control plotter EXTREMA, model Basic), to realize the GNP strips.
- (iv)
- The GNP strips undergo a final treatment of calendaring (optionally followed by annealing), that compacts them and provides an optimized thickness/alignment ratio.
2.2. ICE Sensor Operating Principle and Design
2.3. Electromagnetic and Circuital Models
2.4. Experimental Setup
3. Results and Discussion
3.1. Experimental Results
3.2. Model Interpretation of the Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caliskan, F.; Hajiyev, C. A review of in-flight detection and identification of aircraft icing and reconfigurable control. Prog. Aerosp. Sci. 2013, 60, 12–34. [Google Scholar] [CrossRef]
- Wei, K.; Yang, Y.; Zuo, H.; Zhong, D. A review on ice detection technology and ice elimination technology for wind turbine. Wind Energy 2020, 23, 433–457. [Google Scholar] [CrossRef]
- Tabatabai, H.; Aljuboori, M. A novel concrete-based sensor for detection of ice and water on roads and bridges. Sensors 2017, 17, 2912. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, M.; Kiernicki, J. Flashover problems caused by ice build up on insulators. IEEE Electr. Insul. Mag. 1995, 11, 5–17. [Google Scholar] [CrossRef]
- Jackson, D.; Goldberg, J. Ice Detection Systems: A Historical Perspective; SAE Technical Paper 2007-01-3325; SAE International: Pittsburgh, PA, USA, 2007. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, K.T.; Kobayashi, M.; Jen, C.K.; Mrad, N. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers. Smart Mater. Struct. 2008, 17, 045023. [Google Scholar] [CrossRef]
- Wiltshire, B.; Mirshahidi, K.; Golovin, K.; Zarifi, M.H. Robust and sensitive frost and ice detection via planar microwave resonator sensor. Sens. Actuators B Chem. 2019, 301, 126881. [Google Scholar] [CrossRef]
- Martínez, J.; Ródenas, A.; Stake, A.; Traveria, M.; Aguiló, M.; Solis, J.; Osellame, R.; Tanaka, T.; Berton, B.; Kimura, S.; et al. Harsh-environment-resistant OH vibrations-sensitive mid-infrared water-ice photonic sensor. Adv. Mater. Technol. 2017, 2, 1700085. [Google Scholar] [CrossRef]
- Gonzalez, M.; Frövel, M. Fiber Bragg grating sensors ice detection: Methodologies and performance. Sens. Actuators A Phys. 2022, 346, 113778. [Google Scholar] [CrossRef]
- Yousuf, A.; Khawaja, H.; Virk, M.S. Conceptual design of cost-effective ice detection system based on infrared thermography. Cold Reg. Sci. Technol. 2023, 215, 103941. [Google Scholar] [CrossRef]
- Anisimkin, V.; Kolesov, V.; Kuznetsova, A.; Shamsutdinova, E.; Kuznetsova, I. An analysis of the water-to-ice phase transition using acoustic plate waves. Sensors 2021, 21, 919. [Google Scholar] [CrossRef]
- Rieman, L.; Guk, E.; Kim, T.; Son, C.; Kim, J.-S. Development of a Novel Multi-Channel Thermocouple Array Sensor for In-Situ Monitoring of Ice Accretion. Sensors 2020, 20, 2165. [Google Scholar] [CrossRef] [PubMed]
- González del Val, M.; Mora Nogués, J.; García Gallego, P.; Frövel, M. Icing Condition Predictions Using FBGS. Sensors 2021, 21, 6053. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Rose, J.L. Ultrasonic guided wave tomography for ice detection. Ultrasonics 2016, 67, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Virk, M.S.; Mustafa, M.Y.; Al-Hamdan, Q. Atmospheric ice accretion measurement techniques. Int. J. Multiphys. 2011, 5, 229–242. [Google Scholar] [CrossRef]
- Richter, M.; Leonard, G.; Smith, I.; Langhorne, P.; Mahoney, A.; Parry, M. Accuracy and precision when deriving sea-ice thickness from thermistor strings: A comparison of methods. J. Glaciol. 2023, 69, 879–898. [Google Scholar] [CrossRef]
- Environmental Conditions and Test Procedures for Airborne Equipment. Available online: https://do160.org/rtca-do-160g/ (accessed on 19 October 2023).
- Janas, D.; Koziol, K.K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 2014, 6, 3037–3045. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Sutar, H.; Senapati, P.; Murmu, R.; Roy, D. Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. J. Compos. Sci. 2021, 5, 181. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Han, S.; Chand, A.; Araby, S.; Cai, R.; Chen, S.; Kang, H.; Cheng, R.; Meng, Q. Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology 2019, 31, 075702. [Google Scholar] [CrossRef]
- Koskinen, T.; Juntunen, T.; Tittonen, J. Large-Area Thermal Distribution Sensor Based on Multilayer Graphene Ink. Sensors 2020, 20, 5188. [Google Scholar] [CrossRef]
- Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.-P. A Review on Functionalized Graphene Sensors for Detection of Ammonia. Sensors 2021, 21, 1443. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R. N-Graphene Paper Electrodes as Sustainable Electrochemical DNA Sensor. J. Electrochem. Soc. 2023, 170, 077503. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Kıranşan, K.D.; Topçu, E. A Flexible Graphene Paper Electrochemical Sensor with Electrodeposited Ag and Ni Nanoparticles for H2O2 Detection. IEEE Sens. J. 2023, 23, 7087–7094. [Google Scholar] [CrossRef]
- Dongo, P.D.; Machrafi, H.; Minetti, C.; Amato, A.; Queeckers, P.; Iorio, C.S. A heat-pulse method for detecting ice formation on surfaces. Therm. Sci. Eng. Prog. 2021, 22, 100813. [Google Scholar] [CrossRef]
- Dui, D.; Huang, Y.; Huang, L.; Linag, J.; Ma, Y.; Chen, Y. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192. [Google Scholar] [CrossRef]
- Smovzh, D.V.; Kostogrud, I.A.; Boyko, E.V.; Matochkin, P.E.; Pilnik, A.A. Joule heater based on single-layer graphene. Nanotechnology 2020, 31, 335704. [Google Scholar] [CrossRef]
- Sibilia, S.; Bertocchi, F.; Chiodini, S.; Cristiano, F.; Ferrigno, L.; Giovinco, G.; Maffucci, A. Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips. Nanotechnology 2021, 32, 275701. [Google Scholar] [CrossRef]
- Lahbacha, K.; Sibilia, S.; Trezza, G.; Giovinco, G.; Bertocchi, F.; Chiodini, S.; Cristiano, F.; Maffucci, A. Electro-thermal Parameters of Graphene Nano-Platelets Films for De-Icing Applications. Aerospace 2022, 9, 107. [Google Scholar] [CrossRef]
- Giovinco, G.; Sibilia, S.; Maffucci, A. Characterization of the thermal conductivity and diffusivity of graphene nanoplatelets strips: A low-cost technique. Nanotechnology 2023, 34, 345703. [Google Scholar] [CrossRef]
- Vertuccio, L.; De Santis, F.; Pantani, R.; Lafdi, K.; Guadagno, L. Effective de-icing skin using graphene-based flexible heater. Compos. Part B Eng. 2019, 162, 600–610. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Moriche, R.; Del Rosario, G.; Jiménez-Suárez, A.; Prolongo, M.G.; Ureña, A. Joule Effect Self-Heating of Epoxy Composites Reinforced with Graphitic Nanofillers. J. Polym. Res. 2016, 23, 189. [Google Scholar] [CrossRef]
- Forestiere, C.; Maffucci, A.; Miano, G. Hydrodynamic model for the signal propagation along carbon nanotubes. J. Nanophotonics 2010, 4, 041695. [Google Scholar] [CrossRef]
- Abergel, D.S.L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261–482. [Google Scholar] [CrossRef]
- Kovtun, A.; Treossi, E.; Mirotta, N.; Scidà, A.; Liscio, A.; Christian, M.; Valorosi, F.; Boschi, A.; Young, R.J.; Galiotis, C.; et al. Benchmarking of graphene-based materials: Real commercial products vs. ideal graphene. 2D Mater. 2019, 6, 025006. [Google Scholar] [CrossRef]
- Wu, H.; Drzal, L.T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 2012, 50, 1135–1145. [Google Scholar] [CrossRef]
- Del Rio Castilloa, A.E.; Pellegrini, V.; Ansaldo, A.; Ricciardell, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E.; et al. High-yield production of 2d crystals by wet-jet milling. Mater. Horiz. 2018, 5, 809–904. [Google Scholar] [CrossRef]
- Maffucci, A.; Micciulla, F.; Cataldo, A.; Miano, G.; Bellucci, S. Bottom-up Realization and Electrical Characterization of a Graphene-Based Device. Nanotechnology 2016, 27, 095204. [Google Scholar] [CrossRef]
- Sellathurai, A.J.; Mypati, S.; Kontopoulou, M.; Barz, D.P.J. High yields of graphene nanoplatelets by liquid phase exfoliation using graphene oxide as a stabilizer. Chem. Eng. J. 2023, 451, 138365. [Google Scholar] [CrossRef]
- Nanesa Srl, Arezzo Italy. Available online: www.nanesa.it (accessed on 16 October 2023).
- Sutar, H.; Mishra, B.; Senapati, P.; Murmu, R.; Sahu, D. Mechanical, Thermal, and Morphological Properties of Graphene Nanoplatelet-Reinforced Polypropylene Nanocomposites: Effects of Nanofiller Thickness. J. Compos. Sci. 2021, 5, 24. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, J.; Chen, X.; Weng, G.J. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method. Nanomaterials 2020, 10, 1129. [Google Scholar] [CrossRef]
- Ravindran, A.R.; Feng, C.; Huang, S.; Wang, Y.; Zhao, Z.; Yang, J. Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers 2018, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Maffucci, A.; Miano, G. Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects. IEEE Trans. Nanotechnol. 2013, 12, 817–823. [Google Scholar] [CrossRef]
- Forestiere, C.; Maffucci, A.; Miano, G. On the Evaluation of the Number of Conducting Channels in Multiwall Carbon Nanotubes. IEEE Trans. Nanotechnol. 2011, 10, 1221–1223. [Google Scholar] [CrossRef]
- Zhao, S.; Lou, D.; Zhan, P.; Li, G.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shena, C.; Guo, Z. Heating-induced negative tem-perature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J. Mater. Chem. C 2017, 32, 8233–8242. [Google Scholar] [CrossRef]
- Alofi, A.; Srivastava, G.P. Thermal conductivity of graphene and graphite. Phys. Rev. B 2013, 87, 115421. [Google Scholar] [CrossRef]
- Troiano, A.; Pasero, E.; Mesin, L. Experimental Validation of a Sensor Monitoring Ice Formation over a Road Surface. Sens. Transducers 2012, 14, 112–121. [Google Scholar]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement, Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/50461.html (accessed on 8 November 2023).
Material | %GNPs | Binder | Thickness (µm) | Length (cm) | Width (mm) |
---|---|---|---|---|---|
G-PREG (95/5) | 95 | Polyurethane 5% | 75 | 10 | 6 |
Material | (µΩm) | (1/°C) |
---|---|---|
Cu | 1.68 | 3.90 × 10−3 |
G-Preg (95/5) | 15.58 | −1.37 × 10−3 |
Material | ε | (W/mK) |
---|---|---|
Cu | 0.65–0.88 | 386–395 |
G-Preg (95/5) | 0.53 | 295.5 |
Ice Sample | Thickness (mm) | Width (mm) |
---|---|---|
Type A | 3 | 12 |
Type B | 12 | 28 |
Type C | 15 | 10 |
K | 20 Hz | 50 Hz | 100 Hz | 200 Hz | 500 Hz | 1 kHz | 2 kHz | 5 kHz | 10 kHz | 20 kHz | 50 kHz | 100 kHz | 200 kHz | 500 kHz | 1 MHz |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Capacitance | ε = 1 | ε = 80 |
---|---|---|
Cb (pF) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibilia, S.; Tari, L.; Bertocchi, F.; Chiodini, S.; Maffucci, A. A Capacitive Ice-Sensor Based on Graphene Nano-Platelets Strips. Sensors 2023, 23, 9877. https://doi.org/10.3390/s23249877
Sibilia S, Tari L, Bertocchi F, Chiodini S, Maffucci A. A Capacitive Ice-Sensor Based on Graphene Nano-Platelets Strips. Sensors. 2023; 23(24):9877. https://doi.org/10.3390/s23249877
Chicago/Turabian StyleSibilia, Sarah, Luca Tari, Francesco Bertocchi, Sergio Chiodini, and Antonio Maffucci. 2023. "A Capacitive Ice-Sensor Based on Graphene Nano-Platelets Strips" Sensors 23, no. 24: 9877. https://doi.org/10.3390/s23249877
APA StyleSibilia, S., Tari, L., Bertocchi, F., Chiodini, S., & Maffucci, A. (2023). A Capacitive Ice-Sensor Based on Graphene Nano-Platelets Strips. Sensors, 23(24), 9877. https://doi.org/10.3390/s23249877