Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area Description
2.1.2. Grape Maturity Indicators
2.1.3. Overview of the Data Collected
2.2. Methods
2.2.1. Analysis of Maturity Indicators in the Laboratory
2.2.2. Spectral Measurements and Pre-Treatments
2.2.3. Proposed AI Workflow in the Current Study
- 1.
- Predict the 2023 Brix content using the model developed in our previous study that considered the 2020–2021 data collection campaign.
- 2.
- Build single-output ML models using the 2023 dataset to predict (independently) the maturity indicators, namely, Brix, pH, and TA. Here, all spectral sources are considered as input to the models independently, and the best model per each property will be reported. This process is further described in Section 2.2.4.
- 3.
- Build multi-output models to simultaneously predict all three maturity indicators. The goal is to take advantage of the cross-correlations that exist in these indicators. Moreover, a novel multi-input and multi-output CNN model employing a multi-head attention mechanism is proposed. The multi-input refers to the simultaneous use of multiple input pre-treatments to maximize the information obtained from the various spectral sources [32,33]. The goal is to establish a model that is more robust compared to the best single-output models. The proposed CNN model is described in Section 2.2.5.
2.2.4. Analysis Using Standard Machine Learning Models
- Partial Least Squares regression (PLS) [36], a multivariate regression technique that aims to maximize the covariance between input variables and output variables, reducing data dimensionality while preserving relevant information for more effective regression modeling. PLS has only one hyperparameter, namely, the number of latent variables; to optimize it, we searched within [1, 100].
- Random Forest (RF) [37], an ensemble learning method that constructs multiple decision trees during training and combines their predictions through voting or averaging, providing a robust and accurate model while mitigating overfitting. To optimize the hyperparameters of RF, a grid search was conducted as follows. The number of trees was selected from the {50, 100, 150, 200} set while the maximum number of features to consider when looking for the best split were selected from the {“max”, “sqrt”, “log2”} set.
- Support Vector Regressor (SVR) [38], which leverages the concept of support vectors and a margin of tolerance to find a hyperplane that best fits the data points, enabling efficient regression by maximizing the margin between predicted values and the actual target values. We selected the RBF kernel and optimized its hyperparameters through a grid search by examining the following values for : {0.01, 0.025, 0.05, 0.075, 0.10, 0.15, 0.20}, while the cost C was selected from .
2.2.5. Analysis Using a Novel Multi-Input and Multi-Output CNN Employing a Multi-Head Attention Mechanism
2.2.6. Evaluating the Performance of the Models
2.2.7. Software Used for Model Implementation and Data Analysis
3. Results
3.1. Data Collected in the 2023 Growing Season
3.2. Evaluation of the 2020–2021 Model on the 2023 Dataset
3.3. Prediction of Maturity (Brix, pH, and TA) on the 2023 Dataset
3.3.1. Standard Single-Output Machine Learning Models
3.3.2. Multi-Output Models
3.4. Model Intepretability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
CV | Cross-Validation |
NIR | Near-Infrared |
OIV | International Organization of Vine and Wine |
PLS | Partial Least Squares |
RF | Random Forest |
SSC | Soluble Solids Content |
SVR | Support Vector Regression |
SWIR | Short-Wave Infrared |
TA | Titratable Acidity |
TSS | Total Soluble Solids |
References
- International Organization of Vine and Wine, OIV. State of the World Vine and Wine Sector in 2022; International Organization of Vine and Wine: Dijon, France, 2023. [Google Scholar]
- Niimi, J.; Boss, P.K.; Jeffery, D.; Bastian, S.E.P. Linking Sensory Properties and Chemical Composition of Vitis vinifera cv. Cabernet Sauvignon Grape Berries to Wine. Am. J. Enol. Vitic. 2017, 68, 357–368. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Minnaar, D.P.; Rijst, M.V.D.; Hunter, K. Grapevine row orientation, vintage and grape ripeness effect on anthocyanins, flavan-3-ols, flavonols and phenolic acids: I. Vitis Vinifera L. Cv. Syrah Grapes. OENO One 2022, 56, 275–293. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar] [CrossRef]
- Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Santos, C.H.; Pekkeriet, E. Agricultural Robotics for Field Operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef]
- Droukas, L.; Doulgeri, Z.; Tsakiridis, N.L.; Triantafyllou, D.; Kleitsiotis, I.; Mariolis, I.; Giakoumis, D.; Tzovaras, D.; Kateris, D.; Bochtis, D. A Survey of Robotic Harvesting Systems and Enabling Technologies. J. Intell. Robot. Syst. 2023, 107, 21. [Google Scholar] [CrossRef]
- Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G.A.; Pachidis, T.P.; Kaburlasos, V.G. Machine Vision for Ripeness Estimation in Viticulture Automation. Horticulturae 2021, 7, 282. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Rodríguez-Pulido, F.J.; Toci, A.T.; García-Estevez, I. Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. Food Rev. Int. 2022, 38, 884–912. [Google Scholar] [CrossRef]
- Ozaki, Y.; Huck, C.W.; Beć, K.B. Near-IR Spectroscopy and Its Applications. In Molecular and Laser Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 11–38. [Google Scholar] [CrossRef]
- Ramirez, C.A.M.; Greenop, M.; Ashton, L.; ur Rehman, I. Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev. 2020, 56, 733–763. [Google Scholar] [CrossRef]
- Houhou, R.; Bocklitz, T. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data. Anal. Sci. Adv. 2021, 2, 128–141. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Murta, G.C.; Barroso, J.M.; Rato, A.E. Quality Assessment of Red Wine Grapes through NIR Spectroscopy. Agronomy 2022, 12, 637. [Google Scholar] [CrossRef]
- Daniels, A.J.; Poblete-Echeverría, C.; Opara, U.L.; Nieuwoudt, H.H. Measuring Internal Maturity Parameters Contactless on Intact Table Grape Bunches Using NIR Spectroscopy. Front. Plant Sci. 2019, 10, 1517. [Google Scholar] [CrossRef] [PubMed]
- Ping, F.; Yang, J.; Zhou, X.; Su, Y.; Ju, Y.; Fang, Y.; Bai, X.; Liu, W. Quality Assessment and Ripeness Prediction of Table Grapes Using Visible–Near-Infrared Spectroscopy. Foods 2023, 12, 2364. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Correal, K.B.; Marcelo, V.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries. Agronomy 2023, 13, 2275. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Borchani, H.; Varando, G.; Bielza, C.; Larrañaga, P. A survey on multi-output regression. WIREs Data Min. Knowl. Discov. 2015, 5, 216–233. [Google Scholar] [CrossRef]
- Xu, D.; Shi, Y.; Tsang, I.W.; Ong, Y.S.; Gong, C.; Shen, X. Survey on Multi-Output Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [Google Scholar] [CrossRef]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors 2023, 23, 1065. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.F.; Wu, B.H.; Fan, P.G.; Li, S.H.; Li, L.S. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2006, 86, 1526–1536. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances—A review. TrAC Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Theocharis, J.B.; Panagos, P.; Zalidis, G.C. An evolutionary fuzzy rule-based system applied to the prediction of soil organic carbon from soil spectral libraries. Appl. Soft Comput. 2019, 81, 105504. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef]
- Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Proceedings of the 9th International Conference on Neural Information Processing Systems, NIPS’96, Cambridge, MA, USA, 3–5 December 1996; pp. 155–161. [Google Scholar]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 2018, 18, 1–52. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 1 November 2023).
- The Pandas Development Team. pandas-dev/pandas: Pandas; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Waskom, M.L. seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Fadock, M.; Brown, R.B.; Reynolds, A.G. Visible-Near Infrared Reflectance Spectroscopy for Nondestructive Analysis of Red Wine Grapes. Am. J. Enol. Vitic. 2015, 67, 38–46. [Google Scholar] [CrossRef]
- Pampuri, A.; Tugnolo, A.; Giovenzana, V.; Casson, A.; Pozzoli, C.; Brancadoro, L.; Guidetti, R.; Beghi, R. Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes. Appl. Sci. 2022, 12, 4853. [Google Scholar] [CrossRef]
- González-Caballero, V.; Sánchez, M.T.; López, M.I.; Pérez-Marín, D. First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. J. Food Eng. 2010, 101, 158–165. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Malegori, C.; Civelli, R.; Guidetti, R. Wavelength Selection with a View to a Simplified Handheld Optical System to Estimate Grape Ripeness. Am. J. Enol. Vitic. 2013, 65, 117–123. [Google Scholar] [CrossRef]
- Max, J.J.; Chapados, C. Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. J. Phys. Chem. A 2007, 111, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Nogales-Bueno, J.; Hernández-Hierro, J.M.; Rodríguez-Pulido, F.J.; Heredia, F.J. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: A preliminary approach. Food Chem. 2014, 152, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Tsakiridis, N.L.; Samarinas, N.; Kokkas, S.; Kalopesa, E.; Tziolas, N.V.; Zalidis, G.C. In situ grape ripeness estimation via hyperspectral imaging and deep autoencoders. Comput. Electron. Agric. 2023, 212, 108098. [Google Scholar] [CrossRef]
Layer | Output Shape | Description |
---|---|---|
Input (Spectral Data) | () | Input layer for VNIR–SWIR spectra |
Multi-Head Attention | (None, ) | Multi-head attention mechanism (8 heads of size 64) |
Conv1D | (None, L, 128) | Convolutional layer with 128 filters and kernel size 5 |
Dropout | (None, L, 128) | Dropout layer with rate 0.2 |
MaxPooling1D | (None, , 128) | Max-pooling layer with pool size 2 |
Conv1D | (None, , 64) | Convolutional layer with 32 filters and kernel size 7 |
Dropout | (None, , 64) | Dropout layer with rate 0.2 |
MaxPooling1D | (None, , 64) | Max-pooling layer with pool size 2 |
Conv1D | (None, , 32) | Convolutional layer with 16 filters and kernel size 7 |
Flatten | (None, ) | Flatten layer |
Dense | (None, 128) | Fully connected layer, 64 units and ReLU activation |
Dense | (None, 64) | Fully connected layer, 64 units and ReLU activation |
Dense | (None, 32) | Fully connected layer, 32 units and ReLU activation |
Output (Brix) | (None, 1) | Regression output for Brix |
Output (pH) | (None, 1) | Regression output for pH |
Output (TA) | (None, 1) | Regression output for TA |
Variety | Year | N | Mean | Std. | Min | Max | |||
---|---|---|---|---|---|---|---|---|---|
Brix | |||||||||
Chardonnay | 2020 | 39 | 19.40 | 2.11 | 14.2 | 18.15 | 19.30 | 20.75 | 23.2 |
2021 | 100 | 19.86 | 4.06 | 10.00 | 17.00 | 19.65 | 22.92 | 30.00 | |
2023 | 70 | 19.06 | 5.86 | 5.5 | 17.00 | 20.25 | 23.80 | 26.8 | |
Malagouzia | 2021 | 179 | 18.63 | 5.06 | 6.80 | 14.75 | 20.00 | 22.30 | 30.00 |
2023 | 80 | 17.54 | 6.08 | 5.00 | 14.00 | 18.25 | 22.12 | 28.20 | |
Sauvignon Blanc | 2020 | 95 | 15.15 | 5.61 | 4.20 | 10.90 | 15.00 | 20.60 | 24.50 |
2021 | 100 | 19.96 | 5.72 | 7.50 | 15.85 | 20.10 | 25.00 | 31.40 | |
2023 | 60 | 18.99 | 6.51 | 5.60 | 16.75 | 20.25 | 23.52 | 28.20 | |
Syrah | 2020 | 110 | 16.29 | 4.84 | 4.90 | 13.00 | 16.20 | 19.08 | 25.50 |
2021 | 120 | 18.09 | 5.08 | 5.50 | 14.20 | 17.90 | 22.25 | 30.00 | |
2023 | 90 | 17.13 | 6.06 | 4.70 | 13.00 | 18.85 | 22.00 | 26.50 | |
pH | |||||||||
Chardonnay | 2023 | 60 | 3.19 | 0.26 | 2.73 | 2.91 | 3.24 | 3.41 | 3.79 |
Malagouzia | 2023 | 70 | 3.31 | 0.48 | 2.51 | 3.03 | 3.28 | 3.46 | 5.10 |
Sauvignon Blanc | 2023 | 50 | 3.04 | 0.26 | 2.56 | 2.84 | 3.02 | 3.25 | 3.46 |
Syrah | 2023 | 80 | 3.21 | 0.36 | 2.56 | 2.87 | 3.24 | 3.52 | 3.83 |
Titratable acidity | |||||||||
Chardonnay | 2023 | 60 | 7.25 | 3.67 | 3.3 | 4.7 | 5.8 | 8.48 | 19.1 |
Malagouzia | 2023 | 70 | 7.46 | 5.34 | 3.0 | 4.10 | 5.35 | 8.15 | 30.0 |
Sauvignon Blanc | 2023 | 50 | 9.93 | 5.84 | 3.8 | 5.60 | 8.15 | 12.38 | 26.3 |
Syrah | 2023 | 80 | 10.18 | 7.08 | 3.9 | 5.68 | 7.2 | 12.68 | 35.6 |
2020–2021 | 2023 | ||||||
---|---|---|---|---|---|---|---|
Variety | RMSE | RPIQ | RMSE | RPIQ | |||
Chardonnay | 2.10 | 0.63 | 2.24 | 1.96 | 0.74 | 3.39 | |
Malagouzia | 1.96 | 0.84 | 4.18 | 2.75 | 0.71 | 3.02 | |
Sauvignon Blanc | 2.20 | 0.86 | 4.11 | 2.57 | 0.61 | 2.48 | |
Syrah | 1.76 | 0.87 | 4.26 | 2.32 | 0.78 | 3.73 |
Variety | Model | Spectral Pre-Treatment | RMSE | RPIQ | |
---|---|---|---|---|---|
Brix | |||||
Chardonnay | RF | ABS+SG1+SNV | 1.39 | 0.86 | 4.49 |
Malagouzia | PLS | REF | 1.61 | 0.89 | 5.43 |
Sauvignon Blanc | PLS | ABS+SG1 | 1.91 | 0.74 | 3.85 |
Syrah | PLS | REF+SNV | 1.76 | 0.87 | 4.89 |
pH | |||||
Chardonnay | RF | ABS+SG1+SNV | 0.09 | 0.88 | 5.72 |
Malagouzia | SVR | REF+SNV | 0.35 | 0.44 | 1.36 |
Sauvignon Blanc | SVR | ABS+SG1 | 0.13 | 0.74 | 3.06 |
Syrah | SVR | REF+SNV | 0.13 | 0.85 | 4.51 |
Titratable acidity | |||||
Chardonnay | RF | ABS+SG1+SNV | 2.06 | 0.67 | 1.90 |
Malagouzia | RF | REF+SG1 | 2.46 | 0.71 | 1.68 |
Sauvignon Blanc | RF | ABS+SG1 | 2.75 | 0.75 | 2.82 |
Syrah | RF | ABS+SG1+SNV | 2.85 | 0.83 | 2.98 |
Standard ML Models | Proposed CNN | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variety | Model | Spectral Pre-Treatment | RMSE | RPIQ | RMSE | RPIQ | |||
Brix | |||||||||
Chardonnay | RF | Abs+SG1+SNV | 1.44 | 0.85 | 4.34 | 1.54 | 0.83 | 3.96 | |
Malagouzia | RF | Abs+SG2+SNV | 2.04 | 0.83 | 3.90 | 1.87 | 0.86 | 4.36 | |
Sauvignon Blanc | PLS | Abs+SG1 | 2.36 | 0.64 | 2.89 | 2.02 | 0.70 | 3.44 | |
Syrah | RF | Abs+SG1 | 1.89 | 0.85 | 4.48 | 1.79 | 0.87 | 4.69 | |
pH | |||||||||
Chardonnay | RF | Abs+SG1+SNV | 0.09 | 0.88 | 6.32 | 0.10 | 0.83 | 4.45 | |
Malagouzia | RF | Abs+SG2+SNV | 0.35 | 0.45 | 1.35 | 0.31 | 0.48 | 1.49 | |
Sauvignon Blanc | PLS | Abs+SG1 | 0.13 | 0.74 | 2.98 | 0.11 | 0.80 | 3.49 | |
Syrah | RF | Abs+SG1 | 0.17 | 0.78 | 3.65 | 0.12 | 0.88 | 4.93 | |
Titratable acidity | |||||||||
Chardonnay | RF | Abs+SG1+SNV | 2.16 | 0.61 | 1.80 | 2.11 | 0.66 | 1.84 | |
Malagouzia | RF | Abs+SG2+SNV | 2.53 | 0.69 | 1.66 | 2.05 | 0.81 | 2.00 | |
Sauvignon Blanc | PLS | Abs+SG1 | 2.95 | 0.73 | 2.22 | 2.14 | 0.85 | 3.05 | |
Syrah | RF | Abs+SG1 | 2.92 | 0.82 | 2.92 | 2.76 | 0.83 | 3.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalopesa, E.; Gkrimpizis, T.; Samarinas, N.; Tsakiridis, N.L.; Zalidis, G.C. Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Sensors 2023, 23, 9536. https://doi.org/10.3390/s23239536
Kalopesa E, Gkrimpizis T, Samarinas N, Tsakiridis NL, Zalidis GC. Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Sensors. 2023; 23(23):9536. https://doi.org/10.3390/s23239536
Chicago/Turabian StyleKalopesa, Eleni, Theodoros Gkrimpizis, Nikiforos Samarinas, Nikolaos L. Tsakiridis, and George C. Zalidis. 2023. "Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks" Sensors 23, no. 23: 9536. https://doi.org/10.3390/s23239536
APA StyleKalopesa, E., Gkrimpizis, T., Samarinas, N., Tsakiridis, N. L., & Zalidis, G. C. (2023). Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Sensors, 23(23), 9536. https://doi.org/10.3390/s23239536