Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Resolution Hyperspectral Imaging Acquisition System
2.2. Experiment Design
2.3. Image Processing and Mean Spectrum Extraction
2.4. Pairwised T-Test for NDVI
2.5. Feature Selection Using Random Forest and One-vs-All Approach
2.6. Machine Learning Method
3. Results
3.1. NDVI T-Test Results and Featued Bands for SOA Classsification
3.2. Machine Learning Method Comparison Preliminary Result
3.3. Classification Result Trained by Combined Round Data Set
3.4. Day-to-Day Validation Result
4. Discussion
4.1. Herbicide Site of Action Distinction through Average NDVI Analysis
4.2. Various Featured Bands Selected by Random Forest Method
4.3. Understanding the SOA of Herbicides through the Integration of an SVM Models Trained on Combined-Round Datasets
4.4. Discussion on Day-to-Day Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duke, S.O.; Stidham, M.A.; Dayan, F.E. A Novel Genomic Approach to Herbicide and Herbicide Mode of Action Discovery. Pest Manag. Sci. 2019, 75, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Mascarelli, A. Growing Up With Pesticides. Science 2013, 341, 740–741. [Google Scholar] [CrossRef]
- Sparks, T.C.; Lorsbach, B.A. Perspectives on the Agrochemical Industry and Agrochemical Discovery. Pest Manag. Sci. 2017, 73, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Why Have No New Herbicide Modes of Action Appeared in Recent Years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef]
- Duke, S.O.; Owens, D.K.; Dayan, F.E. The Growing Need for Biochemical Bioherbicides. In Biopesticides: State of the Art and Future Opportunities; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2014; Volume 1172, pp. 31–43. ISBN 978-0-8412-2999-0. [Google Scholar]
- He, B.; Hu, Y.; Wang, W.; Yan, W.; Ye, Y. The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development. Agronomy 2022, 12, 2792. [Google Scholar] [CrossRef]
- Chiddarwar, R.K.; Rohrer, S.G.; Wolf, A.; Tresch, S.; Wollenhaupt, S.; Bender, A. In Silico Target Prediction for Elucidating the Mode of Action of Herbicides Including Prospective Validation. J. Mol. Graph. Model. 2017, 71, 70–79. [Google Scholar] [CrossRef]
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013, 341, 742–746. [Google Scholar] [CrossRef]
- Manning, L. Bayer Is Betting on Chemical Ag with New Herbicide Slated for 2030. What about Biologics? Available online: https://agfundernews.com/bayer-is-betting-on-chemical-ag-with-new-herbicide-slated-for-2030-what-about-biologics (accessed on 8 November 2023).
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztor, G.; Taller, J.; Kazinczi, G. Herbicide Resistance: Managing Weeds in a Changing World. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Brodie, G. Chapter 3—The Use of Physics in Weed Control. In Non-Chemical Weed Control; Jabran, K., Chauhan, B.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 33–59. ISBN 978-0-12-809881-3. [Google Scholar]
- Herbicide Resistant Weeds by Herbicide Site of Action Summary Table. Available online: https://www.weedscience.org/Pages/SOASummary.aspx (accessed on 26 December 2022).
- Zhang, T.; Huang, Y.; Reddy, K.N.; Yang, P.; Zhao, X.; Zhang, J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy 2021, 11, 583. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, C.; Wang, M.; Gouda, M.; Wei, X.; He, Y.; Liu, Y. Hyperspectral Imaging with Shallow Convolutional Neural Networks (SCNN) Predicts the Early Herbicide Stress in Wheat Cultivars. J. Hazard. Mater. 2022, 421, 126706. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z. Early Detection of Dicamba and 2,4-D Herbicide Injuries on Soybean with LeafSpec, an Accurate Handheld Hyperspectral Leaf Scanner. Master’s Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2022. [Google Scholar]
- Ma, D.; Carpenter, N.; Amatya, S.; Maki, H.; Wang, L.; Zhang, L.; Neeno, S.; Tuinstra, M.R.; Jin, J. Removal of Greenhouse Microclimate Heterogeneity with Conveyor System for Indoor Phenotyping. Comput. Electron. Agric. 2019, 166, 104979. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Jaferzadeh, K.; Thörnberg, B.; Casselgren, J. Calibration of a Hyper-Spectral Imaging System Using a Low-Cost Reference. Sensors 2021, 21, 3738. [Google Scholar] [CrossRef]
- Zhang, L.; Maki, H.; Ma, D.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Wang, L.; Rehman, T.U.; Jin, J. Optimized Angles of the Swing Hyperspectral Imaging System for Single Corn Plant. Comput. Electron. Agric. 2019, 156, 349–359. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Fei, H.; Fan, Z.; Wang, C.; Zhang, N.; Wang, T.; Chen, R.; Bai, T. Cotton Classification Method at the County Scale Based on Multi-Features and Random Forest Feature Selection Algorithm and Classifier. Remote Sens. 2022, 14, 829. [Google Scholar] [CrossRef]
- Advanced Preprocessing: Sample Normalization—Eigenvector Research Documentation Wiki. Available online: https://wiki.eigenvector.com/index.php?title=Advanced_Preprocessing%3A_Sample_Normalization (accessed on 8 November 2023).
- Rehman, T.U.; Zhang, L.; Wang, L.; Ma, D.; Maki, H.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Jin, J. Automated Leaf Movement Tracking in Time-Lapse Imaging for Plant Phenotyping. Comput. Electron. Agric. 2020, 175, 105623. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Zhao, X.; Yang, D.; Bai, Y. Hyperspectral Image Classification with SVM and Guided Filter. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 56. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, H. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sens. 2018, 10, 441. [Google Scholar] [CrossRef]
- Thelen, K.D.; Kravchenko, A.N.; Lee, C.D. Use of Optical Remote Sensing for Detecting Herbicide Injury in Soybean. Weed Technol. 2004, 18, 292–297. [Google Scholar] [CrossRef]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.S.; Kabsch, W. Interaction of the Herbicide Glyphosate with Its Target Enzyme 5-Enolpyruvylshikimate 3-Phosphate Synthase in Atomic Detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Huang, J.; Wang, X.; Blackburn, G.A.; Zhang, Y.; Wang, S.; Mansaray, L.R. Hyperspectral Characterization of Freezing Injury and Its Biochemical Impacts in Oilseed Rape Leaves. Remote Sens. Environ. 2017, 195, 56–66. [Google Scholar] [CrossRef]
- Zur, Y.; Gitelson, A.; Chivkunova, O.; Merzlyak, M. The Spectral Contribution of Carotenoids to Light Absorption and Reflectance in Green Leaves. In Proceedings of the 2nd International Conference Geospatial Information in Agriculture and Forestry, Lake Buena Vista, Florida, USA, 10–12 January 2000; Volume 2, pp. 1–7. [Google Scholar]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Jordan, T.N.; Warren, G.F. Effects of Prometryn and Dinoseb Combinations in an Undiluted Oil Carrier. Weed Sci. 1975, 23, 328–332. [Google Scholar] [CrossRef]
- Henry, W.B.; Shaw, D.R.; Reddy, K.R.; Bruce, L.M.; Tamhankar, H.D. Remote Sensing to Detect Herbicide Drift on Crops. Weed Technol. 2004, 18, 358–368. [Google Scholar] [CrossRef]
- Suarez, L.A.; Apan, A.; Werth, J. Detection of Phenoxy Herbicide Dosage in Cotton Crops through the Analysis of Hyperspectral Data. Int. J. Remote Sens. 2017, 38, 6528–6553. [Google Scholar] [CrossRef]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. A Novel Insight into the Mode of Action of Glufosinate: How Reactive Oxygen Species Are Formed. Photosynth. Res. 2020, 144, 361–372. [Google Scholar] [CrossRef]
- Chahal, G.S.; Johnson, W.G. Influence of Glyphosate or Glufosinate Combinations with Growth Regulator Herbicides and Other Agrochemicals in Controlling Glyphosate-Resistant Weeds. Weed Technol. 2012, 26, 638–643. [Google Scholar] [CrossRef]
- Claus, J.S. Chlorimuron-Ethyl (Classic)®: A New Broadleaf Postemergence Herbicide in Soybean. Weed Technol. 1987, 1, 114–115. [Google Scholar] [CrossRef]
- Reddy, K.N.; Bryson, C.T.; Burke, I.C. Ragweed Parthenium (Parthenium hysterophorus) Control with Preemergence and Postemergence Herbicides. Weed Technol. 2007, 21, 982–986. [Google Scholar] [CrossRef]
- Robinson, A.P.; Simpson, D.M.; Johnson, W.G. Response of Glyphosate-Tolerant Soybean Yield Components to Dicamba Exposure. Weed Sci. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Song, Z.; Wang, J.; Zhang, L.; Rehman, T.U.; Ma, D.; Carpenter, N.R.; Tuinstra, M.R. LeafSpec: An Accurate and Portable Hyperspectral Corn Leaf Imager. Comput. Electron. Agric. 2020, 169, 105209. [Google Scholar] [CrossRef]
Parameters | Data |
---|---|
Camera model | MSV-500 |
Spectrograph | Specim V10E |
Frame rate | 30 FPS |
Exposure time | 6 ms |
Spectral resolution | 1.2 nm |
Spectral range | 399–1000 nm |
Common Name | Trade Name | Dose (g/ha) | Manufacturer |
---|---|---|---|
Atrazine | Aatrex | 62.5 | Syngenta—Greensboro, NC, USA |
Chlorimuron | Classic | 25 | AMVAC Chemical Corporation -Newport Beach, CA, USA |
Glufosinate | Liberty | 62.5 | BASF Corporation—Research Triangle Park, NC, USA |
Glyphosate | Roundup PowerMax | 15.6 | Monsanto Company—St. Louis, MO, USA |
Dinoseb | Dinoseb technical | 125 | Sigma-Aldrich—St. Louis, MO, USA |
Flumioxazin | Valor SX | 1.56 | Valent U.S.A. Corporation—Walnut Creek, CA, USA |
Indaziflam | Specticle Flo | 62.5 | Bayer Environmental Science—Research Triangle Park, NC, USA |
Paraquat | Gramoxone 2SL | 3.9 | Syngenta—Greensboro, NC, USA |
MOA Group | Herbicide | SOA Target |
---|---|---|
Photosynthesis inhibition | Atrazine | PS II inhibition |
Dinoseb | Uncoupler | |
Cell membrane disrupter | Flumioxazin | PPO enzyme |
Paraquat | PS I electron diversion | |
Amino acid synthesis inhibition | Glyphosate | EPSPS synthase |
Glufosinate | Glutamine synthase | |
Chlorimuron | ALS enzyme | |
Cellulose biosynthesis inhibitor | Indaziflam | Cellulose synthesis |
Site of Action | Herbicide | Highest Accuracy | |
---|---|---|---|
PS II inhibition | Atrazine | 1 DAT | 96.9% |
Uncoupler | Dinoseb | 2 DAT | 93.5% |
PPO enzyme | Flumioxazin | 2 DAT | 92.9% |
PS I electron diversion | Paraquat | 1 DAT | 78.1% |
EPSPS synthase | Glyphosate | 6 DAT | 50% |
Glutamine synthase | Glufosinate | 7 DAT | 81.2% |
ALS enzyme | Chlorimuron | 4/7 DAT | 90.6% |
Cellulose synthesis | Indaziflam | 1 DAT | 96.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Rehman, T.; Young, J.; Johnson, W.G.; Yokoo, T.; Young, B.; Jin, J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors 2023, 23, 9300. https://doi.org/10.3390/s23239300
Niu Z, Rehman T, Young J, Johnson WG, Yokoo T, Young B, Jin J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors. 2023; 23(23):9300. https://doi.org/10.3390/s23239300
Chicago/Turabian StyleNiu, Zhongzhong, Tanzeel Rehman, Julie Young, William G. Johnson, Takayuki Yokoo, Bryan Young, and Jian Jin. 2023. "Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research" Sensors 23, no. 23: 9300. https://doi.org/10.3390/s23239300
APA StyleNiu, Z., Rehman, T., Young, J., Johnson, W. G., Yokoo, T., Young, B., & Jin, J. (2023). Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors, 23(23), 9300. https://doi.org/10.3390/s23239300