Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain
Abstract
:1. Introduction
2. Methodology
2.1. Heat Stress Indices
2.1.1. Wet-Bulb Globe Temperature (WBGT)
2.1.2. Tropical Summer Index (TSI)
2.1.3. Other Heat Stress Indices
2.2. Mean Radiant Temperature (MRT)
2.3. Prototype Requirements
2.3.1. Wireless Data Transmission Test
2.3.2. Power Supply and Autonomy Test
2.3.3. Device Robustness Test
3. Prototype Design
3.1. Transmitter
3.1.1. Transmitter Hardware
3.1.2. Transmitter Firmware
3.1.3. Transmitter Box
3.2. Receiver and Database
4. Results and Discussion
4.1. Application Case: Benicalap (Valencia)
4.2. Testing Results
4.2.1. Wireless Data Transmission Test
4.2.2. Power Supply and Autonomy Test
4.2.3. Device Robustness
4.3. Sensor Data Collected
4.4. Heat Stress Indices Calculation
4.5. Total Cost of the Measurement System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NOAA National Centers for Environmental Information Climate at a Glance: Global Mapping. Available online: https://ncdc.noaa.gov/cag/ (accessed on 10 October 2022).
- Ades, M.; Adler, R.; Allan, R.; Allan, R.P.; Anderson, J.; Argüez, A.; Arosio, C.; Augustine, J.A.; Azorin-Molina, C.; Barichivich, J.; et al. Global Climate. Bull. Am. Meteorol. Soc. 2020, 101, S24–S26. [Google Scholar] [CrossRef]
- Miles, L.; Agra, R.; Sengupta, S.; Vidal, A.; Dickson, B. Nature-Based Solutions for Climate Change Mitigation; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Deschenes, O. Temperature, Human Health, and Adaptation: A Review of the Empirical Literature. Energy Econ. 2014, 46, 606–619. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of Temperature-Related Excess Mortality under Climate Change Scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef] [PubMed]
- Fishman, R.; Carrillo, P.; Russ, J. Long-Term Impacts of Exposure to High Temperatures on Human Capital and Economic Productivity. J. Environ. Econ. Manag. 2019, 93, 221–238. [Google Scholar] [CrossRef]
- Nassiri, P.; Monazzam, M.R.; Golbabaei, F.; Farhang Dehghan, S.; Shamsipour, A.; Ghanadzadeh, M.J.; Asghari, M. Modeling Heat Stress Changes Based on Wet-Bulb Globe Temperature in Respect to Global Warming. J. Environ. Health Sci. Eng. 2020, 18, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Castiglia, R.; Wilkinson, S.J.; Oliveira, B.; Hacon, S. Wind and Greenery Effects in Attenuating Heat Stress: A Case Study. J. Clean. Prod. 2021, 291, 125919. [Google Scholar] [CrossRef]
- Hong, T.; Malik, J.; Krelling, A.; O’Brien, W.; Sun, K.; Lamberts, R.; Wei, M. Ten Questions Concerning Thermal Resilience of Buildings and Occupants for Climate Adaptation. Build. Environ. 2023, 244, 110806. [Google Scholar] [CrossRef]
- Liu, S.; Kwok, Y.T.; Ren, C. Investigating the Impact of Urban Microclimate on Building Thermal Performance: A Case Study of Dense Urban Areas in Hong Kong. Sustain. Cities Soc. 2023, 94, 104509. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future Trends and Current State of Smart City Concepts: A Survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-Enabled Smart Cities: State-of-the-Art and Future Trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Csaji, B.C.; Kemeny, Z.; Pedone, G.; Kuti, A.; Vancza, J. Wireless Multi-Sensor Networks for Smart Cities: A Prototype System With Statistical Data Analysis. IEEE Sens. J. 2017, 17, 7667–7676. [Google Scholar] [CrossRef]
- Addabbo, T.; Fort, A.; Mugnaini, M.; Panzardi, E.; Pozzebon, A.; Tani, M.; Vignoli, V. A Low Cost Distributed Measurement System Based on Hall Effect Sensors for Structural Crack Monitoring in Monumental Architecture. Measurement 2018, 116, 652–657. [Google Scholar] [CrossRef]
- Roque-Cilia, S.; Tamariz-Flores, E.I.; Torrealba-Meléndez, R.; Covarrubias-Rosales, D.H. Transport Tracking through Communication in WDSN for Smart Cities. Measurement 2019, 139, 205–212. [Google Scholar] [CrossRef]
- Bacco, M.; Delmastro, F.; Ferro, E.; Gotta, A. Environmental Monitoring for Smart Cities. IEEE Sens. J. 2017, 17, 7767–7774. [Google Scholar] [CrossRef]
- Awan, F.M.; Minerva, R.; Crespi, N. Using Noise Pollution Data for Traffic Prediction in Smart Cities: Experiments Based on LSTM Recurrent Neural Networks. IEEE Sens. J. 2021, 21, 20722–20729. [Google Scholar] [CrossRef]
- Abate, F.; Carratù, M.; Liguori, C.; Paciello, V. A Low Cost Smart Power Meter for IoT. Measurement 2019, 136, 59–66. [Google Scholar] [CrossRef]
- Almalki, K.J.; Jabbari, A.; Ayinala, K.; Sung, S.; Choi, B.-Y.; Song, S. ELSA: Energy-Efficient Linear Sensor Architecture for Smart City Applications. IEEE Sens. J. 2022, 22, 7074–7083. [Google Scholar] [CrossRef]
- Habibzadeh, M.; Xiong, W.; Zheleva, M.; Stern, E.K.; Nussbaum, B.H.; Soyata, T. Smart City Sensing and Communication Sub-Infrastructure. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1159–1162. [Google Scholar]
- Nan, F.; Zeng, C.; Ni, G.; Zhou, M.; Shen, H. Development and Validation of Low-Cost IoT Environmental Sensors: A Case Study in Wuhan, China. IEEE Sens. J. 2023, 23, 3069–3078. [Google Scholar] [CrossRef]
- Hashmy, Y.; Khan, Z.U.; Ilyas, F.; Hafiz, R.; Younis, U.; Tauqeer, T. Modular Air Quality Calibration and Forecasting Method for Low-Cost Sensor Nodes. IEEE Sens. J. 2023, 23, 4193–4203. [Google Scholar] [CrossRef]
- AENOR UNE-EN ISO 7726; Ergonomía de Los Ambientes Térmicos. Instrumentos de Medida de Las Magnitudes Físicas. AENOR: Madrid, Spain, 2002.
- AENOR UNE-EN ISO 7933; Ergonomía Del Ambiente Térmico. Determinación Analítica e Interpretación Del Estrés Térmico Mediante El Cálculo de La Sobrecarga Térmica Estimada. AENOR: Madrid, Spain, 2005.
- AENOR UNE-EN ISO 7243; Ergonomía Del Ambiente Térmico. Evaluación Del Estrés al Calor Utilizando El Índice WBGT (Temperatura de Bulbo Húmedo y de Globo). AENOR: Madrid, Spain, 2017.
- Mirzabeigi, S.; Khalili Nasr, B.; Mainini, A.G.; Blanco Cadena, J.D.; Lobaccaro, G. Tailored WBGT as a Heat Stress Index to Assess the Direct Solar Radiation Effect on Indoor Thermal Comfort. Energy Build. 2021, 242, 110974. [Google Scholar] [CrossRef]
- Zare, S.; Shirvan, H.E.; Hemmatjo, R.; Nadri, F.; Jahani, Y.; Jamshidzadeh, K.; Paydar, P. A Comparison of the Correlation between Heat Stress Indices (UTCI, WBGT, WBDT, TSI) and Physiological Parameters of Workers in Iran. Weather. Clim. Extrem. 2019, 26, 100213. [Google Scholar] [CrossRef]
- Chowdhury, S.; Hamada, Y.; Ahmed, K.S. Prediction and Comparison of Monthly Indoor Heat Stress (WBGT and PHS) for RMG Production Spaces in Dhaka, Bangladesh. Sustain. Cities Soc. 2017, 29, 41–57. [Google Scholar] [CrossRef]
- Vatani, J.; Golbabaei, F.; Dehghan, S.F.; Yousefi, A. Applicability of Universal Thermal Climate Index (UTCI) in Occupational Heat Stress Assessment: A Case Study in Brick Industries. Ind. Health 2016, 54, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Rocklöv, J.; Konarska, J.; Lindberg, F.; Holmer, B.; Dousset, B.; Rayner, D. Mean Radiant Temperature—A Predictor of Heat Related Mortality. Urban Clim. 2014, 10, 332–345. [Google Scholar] [CrossRef]
- Sulzer, M.; Christen, A.; Matzarakis, A. A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts. Sensors 2022, 22, 1828. [Google Scholar] [CrossRef]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM Model System 6.0. Geosci. Model. Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Fröhlich, D.; Matzarakis, A. Calculating Human Thermal Comfort and Thermal Stress in the PALM Model System 6.0. Geosci. Model. Dev. 2020, 13, 3055–3065. [Google Scholar] [CrossRef]
- Krč, P.; Resler, J.; Sühring, M.; Schubert, S.; Salim, M.H.; Fuka, V. Radiative Transfer Model 3.0 Integrated into the PALM Model System 6.0. Geosci. Model. Dev. 2021, 14, 3095–3120. [Google Scholar] [CrossRef]
- Salim, M.H.; Schubert, S.; Resler, J.; Krč, P.; Maronga, B.; Kanani-Sühring, F.; Sühring, M.; Schneider, C. Importance of Radiative Transfer Processes in Urban Climate Models: A Study Based on the PALM 6.0 Model System. Geosci. Model. Dev. 2022, 15, 145–171. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Shahzad, R.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Azhri, M.; Mohanta, T.K.; Lee, I.J. Silicon and Gibberellins: Synergistic Function in Harnessing Aba Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants 2020, 9, 620. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High Resolution Urban Large-Eddy Simulation Studies from Street Canyon to Neighbourhood Scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Pérez-López, P.; Gschwind, B.; Blanc, P.; Frischknecht, R.; Stolz, P.; Durand, Y.; Heath, G.; Ménard, L.; Blanc, I. ENVI-PV: An Interactive Web Client for Multi-Criteria Life Cycle Assessment of Photovoltaic Systems Worldwide. Progress. Photovolt. Res. Appl. 2017, 25, 484–498. [Google Scholar] [CrossRef]
- Schlünzen, K.H.; Hinneburg, D.; Knoth, O.; Lambrecht, M.; Leitl, B.; López, S.; Lüpkes, C.; Panskus, H.; Renner, E.; Schatzmann, M.; et al. Flow and Transport in the Obstacle Layer: First Results of the Micro-Scale Model MITRAS. J. Atmos. Chem. 2003, 44, 113–130. [Google Scholar] [CrossRef]
- Salim, M.H.; Heinke Schlünzen, K.; Grawe, D.; Boettcher, M.; Gierisch, A.M.U.; Fock, B.H. The Microscale Obstacle-Resolving Meteorological Model MITRAS v2.0: Model Theory. Geosci. Model. Dev. 2018, 11, 3427–3445. [Google Scholar] [CrossRef]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort and Energy Studies; Springer International Publishing: Cham, Switzerland, 2021; pp. 339–361. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.M.; Rachid, A. Heat Stress Modeling Using Neural Networks Technique. IFAC-Pap. 2022, 55, 13–18. [Google Scholar] [CrossRef]
- Hunter, C.H.; Minyard, O. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements; Department of Energy (DOE), Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 1999.
- Stull, R. Wet-Bulb Temperature from Relative Humidity and Air Temperature. J. Appl. Meteorol. Climatol. 2011, 50, 2267–2269. [Google Scholar] [CrossRef]
- Bureau of Indian Standards (BIS). National Building Code of India, Group 4; Bureau of Indian Standards (BIS): New Delhi, India, 2005.
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Brake, D.J.; Bates, G.P. Limiting Metabolic Rate (Thermal Work Limit) as an Index of Thermal Stress. Appl. Occup. Environ. Hyg. 2002, 17, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the Operational Procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Salgado, C.; Chiñas-Palacios, C.; Aguila-León, J.; Alfonso-Solar, D. Measurement of the Black Globe Temperature to Estimate the MRT and WBGT Indices Using a Smaller Diameter Globe than a Standardized One: Experimental Analysis. In Proceedings of the Proceedings 5th CARPE Conference: Horizon Europe and beyond, Universitat Politècnica de València, Valencia, Spain, 23–25 October 2019. [Google Scholar]
- Podzorova, M.V.; Tertyshnaya, Y.V.; Pantyukhov, P.V.; Popov, A.A.; Nikolaeva, S.G. Influence of Ultraviolet on Polylactide Degradation. AIP Conf. Proc. 2017, 1909, 020173. [Google Scholar]
- Arvind Industries Europe HD32.3A-CV Direct Reading of PMV/PPD—WBGT. Available online: https://arvindeurope.com/thermal-comfort/hd323a-cv-direct-reading-of-pmv-ppd-wbgt (accessed on 7 March 2023).
- Davis Instruments Davis Vantage Pro2TM Plus Inalámbrica. Available online: https://www.estacionesdavis.es/es/davis-vantage-pro-2/12-davis-vantage-pro2-plus-inalambrica.html (accessed on 7 March 2023).
Component | Qty | Variable | Range | Output | Resolution | Accuracy | Price |
---|---|---|---|---|---|---|---|
DS18B20 | 3 | Temperature | −55~125 °C | Digital | 12 bits | ±0.5 °C | EUR 0.90 |
AM2320 | 1 | Temperature | −40~80 °C | Digital | 0.1 °C | ±0.5 °C | EUR 1.65 |
Relative Humidity | 0~100% | Digital | 0.1% | ±3% | |||
BME280 | 1 | Air pressure | 300~1100 hPa | I2C Bus | 0.16 Pa | ±1 hPa | EUR 0.65 |
Relative Humidity | 0~100% | I2C Bus | 0.01% | ±3% | |||
Temperature | −40~85 °C | I2C Bus | 0.1 °C | ±1 °C | |||
JL-FS2 | 1 | Wind speed | 0 (0.4–0.8)~30 m/s | 0~5 V | 0.1 m/s | ±3% | EUR 32.30 |
HYXC-FXV | 1 | Wind direction | 0~360° (from 0.5 m/s) | 0~5 V | 22.5° | ±3% | EUR 32.05 |
INA219 | 3 | Voltage | 0~26 V | I2C Bus | 12 bits | ±1% | EUR 0.80 |
Current | ±3.2 A | I2C Bus | 0.8 mA | ±1% | |||
INA3221 | 1 | Voltage | 0~26 V | I2C Bus | 12 bits | ±1% | EUR 1.95 |
Current | ±3.2 A (3 Channels) | I2C Bus | 0.8 mA | ±1% | |||
MH-RD | 1 | Raindrops | 0.1~2 MΩ | 0~4.2 V | 10 bits | N/D | EUR 0.40 |
Cebek C-0121 | 2 | Solar irradiance | 0~1000 W/m2 | 0~300 mA | 0.8 mA | ±1% | EUR 32.62 |
Variable ID | Unit | Type | Description |
---|---|---|---|
Receiver | N/A | int | Receiver ID number (transmitters only send data to a specific receiver ID). |
TX_ID | N/A | int | Transmitter ID number. |
BAT_LV | % | float | Battery charge level calculated from V_BUS_V. |
HR_BME | % | float | Relative humidity from BME280 sensor. |
TEX_BME_C | °C | float | Air temperature from BME280 sensor. |
WBGT_DS_C | °C | float | Black globe temperature from DS18B20 sensor. |
TX_DS_C | °C | float | Air temperature from DS18B20 sensor. |
TBOX_DS_C | °C | float | Additional DS18B20 sensor, usually measures transmitter box temperature. |
HR_AM | % | float | Relative humidity from AM2320 sensor. |
TEX_AM_C | °C | float | Air temperature from AM2320 sensor. |
V_WIND_CUP | m/s | float | Wind speed from JL-FS2 sensor. |
DIR_WIND | N/A | string | Wind direction from HYXC-FXV. Up to 16 values (N, NW, SSE, etc.). |
PATM_Pa | Pa | float | Atmospheric pressure from BME280 sensor. |
IRR_UP_Wm2 | W/m2 | float | Solar irradiation from Cebek C-0121 sensor facing upwards. |
IRR_DOWN_Wm2 | W/m2 | float | Reflected solar irradiation from Cebek C-0121 sensor facing downwards. |
RAIN | % | float | Estimated amount of rain (from none to full-wet) from MH-RD sensor. |
V_BUS_V | V | float | Power supply voltage (batteries and solar charger) from INA3221 sensor. |
V_PV_V | V | float | PV panel voltage from INA219 sensor. |
I_BAT_mA | mA | float | Battery current from INA219 (negative means batteries are charging). |
I_CH_mA | mA | float | Solar charging current from INA219 sensor. |
I_IN_mA | mA | float | Current consumed by the Arduino and electronics from INA219 sensor. |
I_PV_mA | mA | float | PV panel current from INA219 sensor. |
ID | Location | Coordinates | Distance | Installation |
---|---|---|---|---|
Receiver | Benicalap Park: Office | 39°29′55.2″ N 0°23′46.7″ W | - | 25 October 2018 |
HSM1 | Benicalap Park: Entrance | 39°29′54.8″ N 0°23′45.6″ W | 33 m | 9 January 2019 |
HSM2 | Benicalap Park: Copse | 39°29′57.0″ N 0°23′47.5″ W | 70 m | 9 July 2021 |
HSM3 | Plaza Regino Mas | 39°29′57.6″ N 0°23′38.3″ W | 214 m | 9 January 2019 |
HSM4 | Calle Luis Braille | 39°29′48.4″ N 0°23′40.2″ W | 260 m | 9 January 2019 |
HSM5 | Benicalap Park: Theatre | 39°29′55.5″ N 0°23′48.0″ W | 34 m | 11 December 2018 |
HSM6 | Carrer del Ninot | 39°30′00.0″ N 0°23′33.6″ W | 345 m | 9 January 2019 |
HSM7 | Carrer del Foc | 39°30′01.5″ N 0°23′38.7″ W | 271 m | 17 April 2019 |
HSM8 | School: Outer wall | 39°29′58.4″ N 0°23′37.8″ W | 235 m | 20 May 2019 |
HSM9 | School: Inner wall | 39°29′58.4″ N 0°23′37.8″ W | 235 m | 1 June 2019 |
HSM10 | Senior Center: Roof | 39°29′46.7″ N 0°23′43.9″ W | 263 m | 10 May 2019 |
HSM11 | Senior Center: Indoor | 39°29′47.1″ N 0°23′43.2″ W | 258 m | 10 May 2019 |
HSM12 | Senior Center: Roof | 39°29′47.1″ N 0°23′43.2″ W | 258 m | 1 June 2019 |
Time Between Measures (min) | Relative Frequency (%) | ||||
---|---|---|---|---|---|
HSM1 | HSM3 | HSM6 | HSMUPV6 | HSMUPV7 | |
<20 | 91.47% | 91.72% | 91.37% | 92.31% | 91.32% |
<35 | 97.77% | 97.92% | 97.53% | 99.24% | 98.19% |
<50 | 98.33% | 98.51% | 98.30% | 99.58% | 98.74% |
<65 | 98.80% | 98.78% | 98.83% | 99.70% | 99.34% |
<80 | 98.80% | 99.10% | 99.31% | 99.83% | 99.73% |
<110 | 99.10% | 99.37% | 99.55% | 99.96% | 99.95% |
<140 | 99.40% | 99.69% | 99.76% | 99.96% | 100.00% |
<170 | 99.74% | 99.69% | 99.80% | 99.96% | 100.00% |
Distance (m) | 33 | 214 | 345 | 570 (*) | 700 (*) |
Efficiency (%) | 84.21% | 84.31% | 84.11% | 89.20% | 89.17% |
Item | Cost |
---|---|
Transmitter: Sensors | EUR 81.03 |
Transmitter: Electronic components | EUR 58.12 |
Transmitter: Lithium batteries (4 units) | EUR 17.55 |
Transmitter: Mechanical parts | EUR 17.19 |
Transmitter: 3D printed parts | EUR 12.87 |
Transmitter Total | EUR 186.76 |
Receiver: Electronic components and other parts | EUR 144.95 |
Receiver: SIM Card data plan (24 months) | EUR 26.40 |
Receiver: 4G USB Modem | EUR 17.07 |
Receiver Total | EUR 188.42 |
HSM | HD32.3A-CV | Davis Vantage Pro2™ Plus | |
---|---|---|---|
Dedicated heat stress measuring. | ✕ | ✓ | ✕ |
Black globe temperature sensor | ✓ | ✓ | ✓ |
Solar irradiation sensor | ✓ | ✕ | ✓ |
Customizable and modular | ✓ | ✕ | ✓ |
Data storage | Local + Online database | Local | Wireless display (300 m) |
Off-grid power supply | Battery + PV panel | ✕ | Battery + PV Panel |
Cost per node | EUR 190 | EUR 3473 | EUR 2325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aduna-Sánchez, À.; Correcher, A.; Alfonso-Solar, D.; Vargas-Salgado, C. Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain. Sensors 2023, 23, 9285. https://doi.org/10.3390/s23229285
Aduna-Sánchez À, Correcher A, Alfonso-Solar D, Vargas-Salgado C. Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain. Sensors. 2023; 23(22):9285. https://doi.org/10.3390/s23229285
Chicago/Turabian StyleAduna-Sánchez, Àlex, Antonio Correcher, David Alfonso-Solar, and Carlos Vargas-Salgado. 2023. "Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain" Sensors 23, no. 22: 9285. https://doi.org/10.3390/s23229285
APA StyleAduna-Sánchez, À., Correcher, A., Alfonso-Solar, D., & Vargas-Salgado, C. (2023). Measuring Heat Stress for Human Health in Cities: A Low-Cost Prototype Tested in a District of Valencia, Spain. Sensors, 23(22), 9285. https://doi.org/10.3390/s23229285