Performance of Grating Couplers Used in the Optical Switch Configuration
Abstract
:1. Introduction
2. Material and Methods
2.1. Production of Grating Masters
2.2. Production of Grating Replicas
2.3. Deposition of Thin Metal Layer
2.4. Interrogation Setup
2.5. Computational Method
3. Results
3.1. Effect of the Period
3.2. Effect of the Depth
3.3. Effect of the Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Working Point | Switch | Angular Range | Slope Order 0 | R2 | Slope Order −1 | R2 |
---|---|---|---|---|---|---|
θl | Λ = 750 nm | 13.2–17.8° | −0.1198 | 0.9972 | 0.1253 | 0.9978 |
Λ = 770 nm | 14–18.7° | −0.131 | 0.9968 | 0.1356 | 0.9974 | |
Λ = 790 nm | 15–19.6° | −0.1437 | 0.9958 | 0.1489 | 0.9966 | |
θr | Λ = 750 nm | 33.4–38° | 0.1023 | 0.9982 | −0.1069 | 0.9985 |
Λ = 770 nm | 30.7–35.2° | 0.1148 | 0.9971 | −0.1198 | 0.9975 | |
Λ = 790 nm | 28.8–33.4° | 0.1326 | 0.9984 | −0.1371 | 0.9983 |
Working Point | Switch | Angular Range | Slope Order 0 | R2 | Slope Order −1 | R2 |
---|---|---|---|---|---|---|
θl | Simulation | 19–24.4° | −0.0992 | 0.9929 | 0.1028 | 0.9945 |
Simulation | 20.6–26.8° | −0.0707 | 0.9877 | 0.0728 | 0.9885 | |
Experience | 27–31° | −0.0508 | 0.99 | 0.058 | 0.9692 | |
Experience | 26–31° | −0.0573 | 0.9819 | 0.0594 | 0.9748 | |
θr | Simulation | 42.2–49° | 0.0767 | 0.9984 | −0.0801 | 0.9985 |
Simulation | 40–48° | 0.0588 | 0.9979 | −0.0633 | 0.998 | |
Experience | 36–43° | 0.0693 | 0.9954 | −0.0659 | 0.9983 | |
Experience | 36–43° | 0.0529 | 0.9771 | −0.05 | 0.9892 |
Working Point | Switch | Angular Range | Slope Order 0 | R2 | Slope Order −1 | R2 |
---|---|---|---|---|---|---|
θl | Simulation | 19–24.4° | −0.1115 | 0.9979 | 0.1165 | 0.9982 |
Simulation | 19.4–25.2° | −0.1079 | 0.9988 | 0.1095 | 0.9985 | |
Experience | 20–26° | −0.1079 | 0.9950 | 0.1023 | 0.9956 | |
Experience | 20–26° | −0.1042 | 0.9972 | 0.0966 | 0.9973 | |
θr | Simulation | 42.2–51° | 0.0778 | 0.9970 | −0.0820 | 0.9974 |
Simulation | 19.4–25.2° | 0.0808 | 0.9992 | −0.0848 | 0.9994 | |
Experience | 41–48° | 0.0846 | 0.9989 | −0.0830 | 0.9986 | |
Experience | 41–48° | 0.0876 | 0.9989 | −0.0787 | 0.9989 |
References
- Šípová, H.; Zhang, S.; Dudley, A.M.; Galas, D.; Wang, K.; Homola, J. Surface Plasmon Resonance Biosensor for Rapid Label-Free Detection of Microribonucleic Acid at Subfemtomole Level. Anal. Chem. 2010, 82, 10110–10115. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, I.A.; Hassan, A.; Oliveira, O.N., Jr.; Crespilho, F.N. On the challenges for the diagnosis of SARS-CoV-2 based on a review of current methodologies. ACS Sens. 2020, 5, 3655–3677. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Jason-Moller, L.; Murphy, M.; Bruno, J. Overview of Biacore Systems and Their Applications. Curr. Protoc. Protein Sci. 2006, 45, 19.13.1–19.13.14. [Google Scholar] [CrossRef]
- Subash, C.B.; Gopinath, S.C. Biosensing applications of surface plasmon resonance-based Biacore technology. Sens. Actuat. B Chem. 2010, 150, 722–733. [Google Scholar]
- Das, C.M.; Guo, Y.; Kang, L.; Ho, H.; Yong, K. Investigation of Plasmonic Detection of Human Respiratory Virus. Adv. Theory Simul. 2020, 3, 2000074. [Google Scholar] [CrossRef]
- Szunerits, S.; Shalabney, A.; Boukherroub, R.; Abdulhalim, I. Dielectric coated plasmonic interfaces: Their interest for sensitive sensing of analyte-ligand interactions. Rev. Anal. Chem. 2012, 31, 15–28. [Google Scholar] [CrossRef]
- Hamza, H.; Mohga, E.; Othman, M.A.; Swillam, M.A. Plasmonic biosensors. Biology 2022, 11, 621. [Google Scholar] [CrossRef]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Zhang, J.; Khan, I.; Zhang, Q.; Liu, X.; Dostalek, J.; Liedberg, B.; Wang, Y. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens. Bioelectron. 2018, 99, 312–317. [Google Scholar] [CrossRef]
- Singh, G.P.; Sardana, N. Smartphone-based surface plasmon resonance sensors: A review. Plasmonics 2022, 17, 1869–1888. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.; Pishva, P.; Pehlivan, Z.S.; Arsoy, E.G.; Saleem, Q.; Bayazıt, M.K.; Yüce, M. Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Anal. Chim. Acta 2021, 1185, 338842. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.; Sonato, A.; De Girolamo, A.; Pascale, M.; Romanato, F.; Rinaldi, R.; Arima, V. An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens. Actuat. B Chem. 2017, 241, 314–320. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, H.; Wang, H.; Lu, Y.; Wang, P. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt. Commun. 2018, 416, 66–70. [Google Scholar] [CrossRef]
- Cao, J.; Sun, Y.; Kong, Y.; Qian, W. The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation. Sensors 2019, 19, 405. [Google Scholar] [CrossRef]
- Long, S.; Cao, J.; Wang, Y.; Gao, S.; Xu, N.; Gao, J.; Wan, W. Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sensors Actuators Rep. 2020, 2, 100016. [Google Scholar] [CrossRef]
- Long, S.; Cao, J.; Geng, S.; Xu, N.; Qian, W.; Gao, S. Optimization of plasmonic sensors based on sinusoidal and rectangular gratings. Opt. Commun. 2020, 476, 126310. [Google Scholar] [CrossRef]
- Sukhotskiy, V.; Cady, N.C.; Chou, E.; Reddy, I.; Furlani, E.P. Numerical modelling of a sinusoidal grating-based surface plasmon coupled emission biosensor. TechConnect Briefs 2018, 4, 205–208. [Google Scholar]
- Bog, U.; Huska, K.; Maerkle, F.; Nesterov-Mueller, A.; Lemmer, U.; Mappes, T. Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Opt. Express 2012, 20, 11357–11369. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Shirkani, H. Highly sensitive mid-infrared SPR biosensor for a wide range of biomolecules and biological cells based on graphene-gold grating. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 119, 114005. [Google Scholar] [CrossRef]
- López-Muñoz, G.A.; Estevez, M.-C.; Peláez-Gutierrez, E.C.; Homs-Corbera, A.; García-Hernandez, M.C.; Imbaud, J.I.; Lechuga, L.M. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens. Bioelectron. 2017, 96, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Sauvage-Vincent, J.; Jourlin, Y.; Petiton, V.; Tishchenko, A.; Verrier, I.; Parriaux, O. Low-loss plasmon-triggered switching between reflected free-space diffraction orders. Opt. Express 2014, 22, 13314–13321. [Google Scholar] [CrossRef] [PubMed]
- Laffont, E.; Crespo-Monteiro, N.; Valour, A.; Berini, P.; Jourlin, Y. Differential Sensing with Replicated Plasmonic Gratings Interrogated in the Optical Switch Configuration. Sensors 2023, 23, 1188. [Google Scholar] [CrossRef] [PubMed]
- Bruhier, H.; Dutems, J.; Laffont, E.; Crespo-Monteiro, N.; Verrier, I.; Parriaux, O.; Berini, P.; Jourlin, Y. Common-mode plasmon sensing scheme as a high-sensitivity compact SPR sensor. Opt. Lett. 2023, 48, 3733–3736. [Google Scholar] [CrossRef]
- Lu, C.; Lipson, R. Interference lithography: A powerful tool for fabricating periodic structures. Laser Photon Rev. 2009, 4, 568–580. [Google Scholar] [CrossRef]
- Dostálek, J.; Homola, J.; Miler, M. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings. Sensors Actuators B Chem. 2005, 107, 154–161. [Google Scholar] [CrossRef]
- Lasagni, A.F. Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns. Adv. Opt. Technol. 2017, 6, 265–275. [Google Scholar] [CrossRef]
- Bruhier, H.; Verrier, I.; Gueye, T.; Varenne, C.; Ndiaye, A.; Parriaux, O.; Veillas, C.; Reynaud, S.; Brunet, J.; Jourlin, Y. Effect of roughness on surface plasmons propagation along deep and shallow metallic diffraction gratings. Opt. Lett. 2022, 47, 349–352. [Google Scholar] [CrossRef]
- Chandezon, J.; Raoult, G.; Maystre, D. A new theoretical method for diffraction gratings and its numerical application. J. Opt. 1980, 11, 235–241. [Google Scholar] [CrossRef]
- Li, L.; Chandezon, J.; Granet, G.; Plumey, J.-P. Rigorous and efficient grating-analysis method made easy for optical engineers. Appl. Opt. 1999, 38, 304–313. [Google Scholar] [CrossRef]
- Iqbal, T.; Noureen, S.; Afsheen, S.; Khan, M.Y.; Ijaz, M. Rectangular and sinusoidal Au-Grating as plasmonic sensor: A comparative study. Opt. Mater. 2019, 99, 109530. [Google Scholar] [CrossRef]
Layer Number (Thickness) | Layer Material | Refractive Index (λ0 = 850 nm) |
---|---|---|
1 (superstrate) | Water | 1.3282 |
2 (100 nm) | Gold | 0.17 + 5.3 i |
3 (substrate) | Photoresist | 1.625 |
3 (substrate) | Amonil | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laffont, E.; Valour, A.; Crespo-Monteiro, N.; Berini, P.; Jourlin, Y. Performance of Grating Couplers Used in the Optical Switch Configuration. Sensors 2023, 23, 9028. https://doi.org/10.3390/s23229028
Laffont E, Valour A, Crespo-Monteiro N, Berini P, Jourlin Y. Performance of Grating Couplers Used in the Optical Switch Configuration. Sensors. 2023; 23(22):9028. https://doi.org/10.3390/s23229028
Chicago/Turabian StyleLaffont, Emilie, Arnaud Valour, Nicolas Crespo-Monteiro, Pierre Berini, and Yves Jourlin. 2023. "Performance of Grating Couplers Used in the Optical Switch Configuration" Sensors 23, no. 22: 9028. https://doi.org/10.3390/s23229028
APA StyleLaffont, E., Valour, A., Crespo-Monteiro, N., Berini, P., & Jourlin, Y. (2023). Performance of Grating Couplers Used in the Optical Switch Configuration. Sensors, 23(22), 9028. https://doi.org/10.3390/s23229028