Multi-Domain Rapid Enhancement Networks for Underwater Images
Abstract
:1. Introduction
2. Literature Review
2.1. Deep Learning
2.2. Physical-Based Methods
2.3. Nonphysical-Based Methods
3. MDCNN-VGG Hybrid Model Architecture
3.1. Overall
3.2. Single-Channel DCNN
3.3. MDCNN-VGG
4. Experimental Design and Result Analysis
4.1. Dataset and Experimental Setup
4.1.1. Dataset
4.1.2. Experimental Configuration
4.1.3. Baseline
4.1.4. Evaluation Metrics
4.2. Multi-Domain Scenarios
4.3. Qualitative Evaluation
4.4. Ablation Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.-c.; Zhang, D.-h.; Zhang, W.-s. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey. Front. Inf. Technol. Electron. Eng. 2020, 21, 1745–1769. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, J.; Zhang, W.; Lin, Z. Multi-view underwater image enhancement method via embedded fusion mechanism. Eng. Appl. Artif. Intell. 2023, 121, 105946. [Google Scholar] [CrossRef]
- Zhou, J.; Pang, L.; Zhang, D.; Zhang, W. Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE J. Ocean. Eng. 2023, 48, 474–488. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef]
- Li, C.; Anwar, S.; Hou, J.; Cong, R.; Guo, C.; Ren, W. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 2021, 30, 4985–5000. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, C.; Bian, L. U-shape transformer for underwater image enhancement. IEEE Trans. Image Process. 2023, 32, 3066–3079. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, B.; Zhao, Q. Underwater Image Enhancement Method Based on Improved Generative Adversarial Network. In Proceedings of the 2023 5th Asia Pacific Information Technology Conference, Ho Chi Minh City, Vietnam, 9–11 February 2023; pp. 62–68. [Google Scholar]
- Marques, T.P.; Albu, A.B. L2UWE: A framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 2286–2295. [Google Scholar]
- Chen, Y.; Li, H.; Yuan, Q.; Wang, Z.; Hu, C.; Ke, W. Underwater Image Enhancement based on Improved Water-Net. In Proceedings of the 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), Wuhan, China, 24–26 March 2023; pp. 450–454. [Google Scholar]
- Bhat, A.; Narang, Y.; Goyal, Y. Underwater Image Enhancement with Feature Preservation using Generative Adversarial Networks (UIEFP GAN). In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 1023–1029. [Google Scholar]
- Mathur, P.; Soni, B. Exploring Color Models for Enhancement of Underwater Image. In Data Driven Approach Towards Disruptive Technologies: Proceedings of MIDAS 2020; Springer: Singapore, 2021; pp. 325–336. [Google Scholar]
- Zhang, C.; Li, M.; Wu, D. Federated Multidomain Learning With Graph Ensemble Autoencoder GMM for Emotion Recognition. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7631–7641. [Google Scholar] [CrossRef]
- Anwar, S.; Li, C. Diving deeper into underwater image enhancement: A survey. Signal Process. Image Commun. 2020, 89, 115978. [Google Scholar] [CrossRef]
- Li, C.; Cong, R.; Kwong, S.; Hou, J.; Fu, H.; Zhu, G.; Zhang, D.; Huang, Q. ASIF-Net: Attention steered interweave fusion network for RGB-D salient object detection. IEEE Trans. Cybern. 2020, 51, 88–100. [Google Scholar] [CrossRef]
- Naik, A.; Swarnakar, A.; Mittal, K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract). Proc. AAAI Conf. Artif. Intell. 2021, 35, 15853–15854. [Google Scholar] [CrossRef]
- Liu, P.; Wang, G.; Qi, H.; Zhang, C.; Zheng, H.; Yu, Z. Underwater image enhancement with a deep residual framework. IEEE Access 2019, 7, 94614–94629. [Google Scholar] [CrossRef]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Erdem, F.; Bayram, B.; Bakirman, T.; Bayrak, O.C.; Akpinar, B. An ensemble deep learning based shoreline segmentation approach (WaterNet) from Landsat 8 OLI images. Adv. Space Res. 2021, 67, 964–974. [Google Scholar] [CrossRef]
- Zong, X.; Chen, Z.; Wang, D. Local-CycleGAN: A general end-to-end network for visual enhancement in complex deep-water environment. Appl. Intell. 2021, 51, 1947–1958. [Google Scholar] [CrossRef]
- Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MD, USA, 14–18 April 2019; Volume 11006, p. 1100612. [Google Scholar]
- Jia, G.; Lu, Y.; Lu, W.; Shi, Y.; Yang, J. A Novel Verification Method for Chinese Aviation Radiotelephony Readbacks Based on LSTM-RNN. Electron. Lett. 2017, 53, 401–403. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, A.K. Decision Tree- and Random Forest- Based Novel Unsteady Aerodynamics Modeling Using Flight Data. J. Aircr. 2019, 56, 403–409. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Xu, J.; Zhang, Y.; Miao, D. Three-way confusion matrix for classification: A measure driven view. Inf. Sci. 2020, 507, 772–794. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.; Wu, L.; Gu, K. DuGAN: An effective framework for underwater image enhancement. IET Image Process. 2021, 15, 2010–2019. [Google Scholar] [CrossRef]
- Lin, Q.; Fouchez, D.; Pasquet, J. Galaxy image translation with semi-supervised noise-reconstructed generative adversarial networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 5634–5641. [Google Scholar]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K. DSLR-quality photos on mobile devices with deep convolutional networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3297–3305. [Google Scholar]
- Regan, D.; Padmavathi, C. A Study on Performance of Bilateral and Trilateral Filters in the Mixed Noise Environment. J. Comput. Theor. Nanosci. 2018, 15, 2089–2091. [Google Scholar] [CrossRef]
- Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Lin, M.; Wu, X.; Wang, Z.; Guan, Z. Single underwater image restoration by decomposing curves of attenuating color. Opt. Laser Technol. 2020, 123, 105947. [Google Scholar] [CrossRef]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2822–2837. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, D.; Zhang, W. A multifeature fusion method for the color distortion and low contrast of underwater images. Multimed. Tools Appl. 2021, 80, 17515–17541. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing underwater images and videos by fusion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 81–88. [Google Scholar]
- Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4572–4576. [Google Scholar]
- Zhu, L.; Fan, H.; Luo, Y.; Xu, M.; Yang, Y. Temporal cross-layer correlation mining for action recognition. IEEE Trans. Multimed. 2021, 24, 668–676. [Google Scholar] [CrossRef]
- Zoumpourlis, G.; Doumanoglou, A.; Vretos, N.; Daras, P. Non-linear Convolution Filters for CNN-Based Learning. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Zhuang, P.; Li, C.; Wu, J. Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 2021, 101, 104171. [Google Scholar] [CrossRef]
- Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 2019, 13, 95. [Google Scholar] [CrossRef]
- Islam, M.J.; Fulton, M.; Sattar, J. Toward a generic diver-following algorithm: Balancing robustness and efficiency in deep visual detection. IEEE Robot. Autom. Lett. 2018, 4, 113–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Zhang, S.; Zhu, T. Leads Detection Using Mixture Statistical Distribution Based CRF Algorithm from Sentinel-1 Dual Polarization SAR Imagery. In Proceedings of the EGU General Assembly 2017 Conference, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Felix, G.; Claudia, N.; Sebastian, H.; Mariette, V.; Christoph, R.; Emanuele, S.; Simonetta, P.; Wolfgang, W. The Added Value of the VH/VV Polarization-Ratio for Global Soil Moisture Estimations from Scatterometer Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3668–3679. [Google Scholar]
- Huang, F.; Ash, J.; Langford, J.; Schapire, R. Learning deep resnet blocks sequentially using boosting theory. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2058–2067. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2D pose estimation using part affinity fields. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1302–1310. [Google Scholar]
- Zhang, W.; Zhuang, P.; Sun, H.H.; Li, G.; Kwong, S.; Li, C. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef]
- Ward, R.; Wu, X.; Bottou, L. AdaGrad stepsizes: Sharp convergence over nonconvex landscapes. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6677–6686. [Google Scholar]
- Li, L.; Lv, M.; Jia, Z.; Ma, H. Sparse representation-based multi-focus image fusion method via local energy in shearlet domain. Sensors 2023, 23, 2888. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, H. Pulse coupled neural network-based multimodal medical image fusion via guided filtering and WSEML in NSCT domain. Entropy 2021, 23, 591. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Si, Y.; Wang, L.; Jia, Z.; Ma, H. A novel approach for multi-focus image fusion based on SF-PAPCNN and ISML in NSST domain. Multimed. Tools Appl. 2020, 79, 24303–24328. [Google Scholar] [CrossRef]
PSNR | SSIM | UIQM | |||||||
---|---|---|---|---|---|---|---|---|---|
EUVP Dark | UFO-120 | UIEB | EUVP Dark | UFO-120 | UIEB | EUVP Dark | UFO-120 | UIEB | |
Shallow UWnet | 20.83 | 18.45 | 21.24 | 0.90 | 0.73 | 0.90 | 2.71 | 2.56 | 2.50 |
UResnet | 27.61 | 21.24 | 24.98 | 0.97 | 0.78 | 0.95 | 2.40 | 2.27 | 2.38 |
FUnIE GAN | 28.68 | 30.38 | 38.75 | 0.96 | 0.81 | 1.00 | 2.95 | 2.89 | 3.08 |
CycleGAN | 8.79 | 16.23 | 17.24 | 0.84 | 0.68 | 0.79 | 2.95 | 2.89 | 2.77 |
UGAN-P | 27.61 | 15.23 | 24.96 | 0.97 | 0.67 | 0.95 | 2.40 | 2.73 | 2.38 |
Uw HL | 39.91 | 30.38 | 38.75 | 1.00 | 0.81 | 0.99 | 2.71 | 2.56 | 2.50 |
MDCNN-VGG | 27.49 | 25.27 | 19.09 | 0.82 | 0.74 | 0.75 | 3.00 | 2.88 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Lee, S.-W. Multi-Domain Rapid Enhancement Networks for Underwater Images. Sensors 2023, 23, 8983. https://doi.org/10.3390/s23218983
Zhao L, Lee S-W. Multi-Domain Rapid Enhancement Networks for Underwater Images. Sensors. 2023; 23(21):8983. https://doi.org/10.3390/s23218983
Chicago/Turabian StyleZhao, Longgang, and Seok-Won Lee. 2023. "Multi-Domain Rapid Enhancement Networks for Underwater Images" Sensors 23, no. 21: 8983. https://doi.org/10.3390/s23218983
APA StyleZhao, L., & Lee, S.-W. (2023). Multi-Domain Rapid Enhancement Networks for Underwater Images. Sensors, 23(21), 8983. https://doi.org/10.3390/s23218983