Radiation Protection of a 3D Computer Tomography Scanning Workplace for Logs—A Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the 3D CT Scanning Workplace
2.2. Method
2.3. Methodology for Calculating the Effective Dose Value E
2.4. Measuring Equipment
2.5. The Source of Radiation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, R.E.; Gunderman, R.B. EMI and the first CT scanner. J. Am. Coll. Radiol. 2010, 7, 778–781. [Google Scholar] [CrossRef]
- Kruger, R.P.; Wecksung, G.W.; Morris, R.A. Industrial applications of computed tomography at Los Alamos Scientific Laboratory. Opt. Eng. 1980, 19, 273–282. [Google Scholar] [CrossRef][Green Version]
- Castillo, M. The industry of CT scanning. Am. J. Neuroradiol. 2012, 33, 583–585. [Google Scholar] [CrossRef]
- Zhang, Y.; Verwaal, W.; Van de Ven, M.F.C.; Molenaar, A.A.A.; Wu, S.P. Using high-resolution industrial CT scan to detect the distribution of rejuvenation products in porous asphalt concrete. Constr. Build. Mater. 2015, 100, 1–10. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Y.; Tan, G.; Zhang, L.; Zhang, Y.; Yu, Z. Analysis of internal structure of cement-stabilized macadam based on industrial CT scanning. Adv. Mater. Sci. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Dutilleul, P.; Lontoc-Roy, M.; Prasher, S.O. Branching out with a CT scanner. Trends Plant Sci. 2005, 10, 411–412. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, A.; le Roux, S.G.; Guelpa, A. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud. Nondestruct. Test. Eval. 2016, 6, 17–25. [Google Scholar] [CrossRef]
- Fredriksson, M. Log sawing position optimization using computed tomography scanning. Wood Mater. Sci. Eng. 2014, 9, 110–119. [Google Scholar] [CrossRef]
- Ursella, E.; Giudiceandrea, F.; Boschetti, M. A Fast and Continuous CT scanner for the optimization of logs in a sawmill. J. Nondestruct. Test. 2018, 2, 1–5. [Google Scholar]
- Fredriksson, M. Optimizing sawing of boards for furniture production using CT log scanning. J. Wood Sci. 2015, 61, 474–480. [Google Scholar] [CrossRef]
- Pan, L.; Rogulin, R.; Kondrashev, S. Artificial neural network for defect detection in CT images of wood. Comput. Electron. Agric. 2021, 187, 106312. [Google Scholar] [CrossRef]
- Longuetaud, F.; Leban, J.M.; Mothe, F.; Kerrien, E.; Berger, M.O. Automatic detection of pith on CT images of spruce logs. Comput. Electron. Agric. 2004, 44, 107–119. [Google Scholar] [CrossRef]
- Giudiceandrea, F.; Katsevich, A.; Ursela, E. A reconstruction algorithm is a key enabling technology for a new ultrafast CT scanner. SIAM News 2016, 49, 470. [Google Scholar]
- Smith-Bindman, R. Is computed tomography safe. N. Engl. J. Med. 2010, 363, 1–4. [Google Scholar] [CrossRef]
- De Chiffre, L.; Carmignato, S.; Kruth, J.P.; Schmitt, R.; Weckenmann, A. Industrial applications of computed tomography. CIRP Ann. 2014, 63, 655–677. [Google Scholar] [CrossRef]
- Power, S.P.; Moloney, F.; Twomey, M.; James, K.; O’Connor, O.J.; Maher, M.M. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J. Radiol. 2016, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Fayngersh, V.; Passero, M. Estimating radiation risk from computed tomography scanning. Lung 2009, 187, 143–148. [Google Scholar] [CrossRef]
- Thrall, J.H. Radiation exposure in CT scanning and risk: Where are we? Radiology 2012, 264, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Klekner, V. (Ed.) Principy a Praxe Radiační Ochrany; AZIN CZ: Praha, Czech Republic, 2000; ISBN 80-238-3703-6. [Google Scholar]
- ICRU. International Commission on Radiation Units and Measurements. In Conversion Coefficients for Use in Radiological Protection against External Radiation; ICRU Report 57; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1998. [Google Scholar]
- Act No. 87/2018 Coll. on radiation protection and the amendment of some laws Slovak Republic. Available online: https://www.slov-lex.sk/static/pdf/2018/87/ZZ_2018_87_20230415.pdf (accessed on 10 July 2023).
- Wei, Q.; Leblon, B.; La Rocque, A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 2011, 41, 2120–2140. [Google Scholar] [CrossRef]
- Council of the European Union. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom; Official Journal of the EU: Brussels, Belgium, 2014; pp. L13:1–L13:73. Available online: http://data.europa.eu/eli/dir/2013/59/oj (accessed on 10 July 2023).
- ICRP. Recommendations of the International Commission on Radiological Protection (Users Edition); ICRP Publication: Ottawa, ON, Canada, 2007. [Google Scholar]
- ICRP. Radiological Protection in Cone Beam Computed Tomography (CBCT); ICRP Publication 129: Ottawa, ON, Canada, 2015. [Google Scholar]
- ICRP. General Principles for the Radiation Protection of Workers; ICRP Publication 75: Ottawa, ON, Canada, 1997. [Google Scholar]
- Bora, A.; Açikgöz, G.; Yavuz, A.; Bulut, M.D. Computed tomography: Are we aware of radiation risks in computed tomography? East. J. Med. 2014, 19, 164. [Google Scholar]
- Brody, A.S.; Frush, D.P.; Huda, W.; Brent, R.L. Radiation risk to children from computed tomography. Pediatrics 2007, 120, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Frush, D.P.; Donnelly, L.F.; Rosen, N.S. Computed tomography and radiation risks: What pediatric health care providers should know. Pediatrics 2003, 112, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.F.; Zhou, X.J.; Li, X.B.; Li, P. Radiation protection in the design of γ-ray industrial computed tomography systems. Nucl. Sci. Tech. 2016, 27, 1–7. [Google Scholar] [CrossRef]
- Carmignato, S.; Wim, D.; Richard, L. Industrial X-ray Computed Tomography; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 1–372. [Google Scholar]
Device | APVL Thermo Scientific, FH 40 G-L10 Ω | Thermo Scientific, RadEye G 20-10 |
---|---|---|
Type of device | Multi-purpose digital survey meter | X-ray and gamma survey meter |
Type of detector | Proportional counter | G-M counter with advanced digital filter (ADF) |
Measured quantity | Sievert (Sv; ambient dose equivalent rate ) | |
Measurement working range | 10 nSv/h–100 mSv | 10 nSv/h–2 mSv |
Energy range | 30 keV–4.4 MeV | 17 keV–1.3 MeV |
Data error | Typically < 5%, maximum 20%, for 137Cs radiation (E = 662 keV) | Typically < 5%, maximum 20%, for 137Cs radiation (E = 662 keV) |
Facility | MICROTEC CT.LOG X-ray Computer Tomography Scanner |
---|---|
X-ray lamp | MXR-225FB |
X-ray lamp cover | MOR—225FBC |
Rated voltage | 225 kV |
Electric current | 13 mA |
Incandescent current | 4.2 A |
Power | 3 kW |
Focal point according to EN 1254 | d = 5.5 mm, material is tungsten |
Angle of the target | 20 degrees |
Cooling medium | water |
Scanning speed | 5 m/min |
Designation of the Measuring Point | Description of the Measuring Point | Comparisons with 20 mSv/year Effective Dose E Limit for an Exposure Duration of 2000 h/year | |
---|---|---|---|
M1 | Control room | 0.13 μSv/h | 0.260 mSv 1.3% of the limit |
M26 | Handler’s workstation, inside the building | 0.17 μSv/h | 0.340 mSv 1.7% of the limit |
M27 | Handler’s workstation, log loading 5 m | 0.15 μSv/h | 0.300 mSv 1.5% of the limit |
M28 | Handler’s workstation, loading logs with a loader 20 m | 0.13 μSv/h | 0.260 mSv 1.3% of the limit |
M29 | Handler’s workstation, log unloading 7 m | 0.13 μSv/h | 0.260 mSv 1.3% of the limit |
Designation of the Measuring Point | Description of the Measuring Point | Comparisons with 1 mSv/year Effective Dose E Limit for an Exposure Duration of 500 h/year | |
---|---|---|---|
M1 | Control room | 0.13 μSv/h | 0.063 mSv 6.3% of the limit |
M2 | Input to CT scanner, surface of slats | 1.75 μSv/h | 0.848 mSv 84% of the limit |
M3 | Output to CT scanner, surface of slats | 1.30 μSv/h | 0.631 mSv 63% of the limit |
M4 | In the CT scanner tunnel—entrance | 65 μSv/h | 31.525 mSv 32 times the limit |
M5 | In CT scanner tunnel—exit | 33 μSv/h | 16.005 mSv 16 times the limit |
M6 | Surface of the cabin at the X-ray source location | 0.20 μSv/h | 0.097 mSv 9.7% of the limit |
M7 | Cabin surface section left | 0.14 μSv/h | 0.068 mSv 6.8% of the limit |
M8 | Cabin surface section right | 0.14 μSv/h | 0.097 mSv 9.7% of the limit |
M9 | Cabin door surface | 0.23 μSv/h | 0.112 mSv 11.2% of the limit |
M10 | Cabin surface at X-ray source location | 0.25 μSv/h | 0.121 mSv 12.1% of the limit |
M11 | Cabin surface section left | 0.20 μSv/h | 0.097 mSv 9.7% of the limit |
M12 | Cabin surface section right | 0.20 μSv/h | 0.097 mSv 9.7% of the limit |
M13 | Cabin door surface | 0.22 μSv/h | 0.107 mSv 10.7% of the limit |
M14 | First section entrance tunnel | 30 μSv/h | 14.55 mSv 15 times the limit |
M15 | Second section entrance tunnel | 14 μSv/h | 6.79 mSv 7 times the limit |
M16 | Third section entrance tunnel | 5.6 μSv/h | 2.716 mSv 2.7 times the limit |
M17 | Fourth section entrance tunnel | 4.1μSv/h | 1.989 mSv 2 times the limit |
M18 | Fifth section entrance tunnel | 2.3 μSv/h | 1.116 mSv 1.12 times the limit |
M19 | Sixth section entrance tunnel | 1.2 μSv/h | 0.582 mSv 58.2% of the limit |
M20 | First section exit tunnel | 40 μSv/h | 19.4 mSv 19.4 times the limit |
M21 | Second section exit tunnel | 17 μSv/h | 8.25 mSv 8.25 times the limit |
M22 | Third section exit tunnel | 6.2 μSv/h | 3.00 mSv 3 times the limit |
M23 | Fourth section exit tunnel | 4.1 μSv/h | 1.99 mSv 1.99 times the limit |
M24 | Fifth section exit tunnel | 2.1 μSv/h | 1.02 mSv 1.02 times the limit |
M25 | Sixth section exit tunnel | 1.1 μSv/h | 0.534 mSv 53.4% of the limit |
M26 | Handler’s workstation, inside the building | 0.17 μSv/h | 0.085 mSv 8.5% of the limit |
M27 | Handler’s workstation, log loading 5 m | 0.15 μSv/h | 0.073 mSv 7.3% of the limit |
M28 | Handler’s workstation, loading logs with a loader 20 m | 0.13 μSv/h | 0.063 mSv 6.3% of the limit |
M29 | Handler’s workstation, log unloading 7 m | 0.13 μSv/h | 0.063 mSv 6.3% of the limit |
Designation of the Measuring Point | Description of the Measuring Point | Comparisons with 1 mSv/year Effective Dose E Limit for an Exposure Duration of 500 h/year | |
---|---|---|---|
M30 | Protective fence, first section | 0.45 μSv/h | 0.218 mSv 21.8% of the limit |
M31 | Protective fence, second section | 0.43 μSv/h | 0.208 mSv 20.8% of the limit |
M32 | Protective fence, third section | 0.43 μSv/h | 0.208 mSv 20.8% of the limit |
M33 | Protective fence, fourth section | 0.41 μSv/h | 0.199 mSv 19.9% of the limit |
M34 | Protective fence, fifth section | 0.40 μSv/h | 0.194 mSv 19.4% of the limit |
M35 | Protective fence, sixth section | 0.40 μSv/h | 0.194 mSv 19.4% of the limit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gergeľ, T.; Hamza, J.; Ondrejka, V.; Němec, M.; Vanek, M.; Drugdová, J. Radiation Protection of a 3D Computer Tomography Scanning Workplace for Logs—A Case Study. Sensors 2023, 23, 8937. https://doi.org/10.3390/s23218937
Gergeľ T, Hamza J, Ondrejka V, Němec M, Vanek M, Drugdová J. Radiation Protection of a 3D Computer Tomography Scanning Workplace for Logs—A Case Study. Sensors. 2023; 23(21):8937. https://doi.org/10.3390/s23218937
Chicago/Turabian StyleGergeľ, Tomáš, Juraj Hamza, Vojtěch Ondrejka, Miroslav Němec, Miroslav Vanek, and Jennifer Drugdová. 2023. "Radiation Protection of a 3D Computer Tomography Scanning Workplace for Logs—A Case Study" Sensors 23, no. 21: 8937. https://doi.org/10.3390/s23218937
APA StyleGergeľ, T., Hamza, J., Ondrejka, V., Němec, M., Vanek, M., & Drugdová, J. (2023). Radiation Protection of a 3D Computer Tomography Scanning Workplace for Logs—A Case Study. Sensors, 23(21), 8937. https://doi.org/10.3390/s23218937