Bridging Neuroscience and Robotics: Spiking Neural Networks in Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Electroencephalogram (EEG) Recording
Task and Procedure
2.2. EEG Recording and Pre-Processing
2.3. Robot Development
2.4. Robot Task and Procedure
2.5. Cell Assemblies
3. Results
3.1. EEG
3.2. Cell Assemblies
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lee, K.-H.; Kim, H.-S.; Lee, S.-J.; Choo, S.-W.; Lee, S.-M.; Nam, K.-T. High precision hand-eye self-calibration for industrial robots. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–2. [Google Scholar]
- Ahmed, S.I.; Javed, G.; Mubeen, B.; Bareeqa, S.B.; Rasheed, H.; Rehman, A.; Phulpoto, M.M.; Samar, S.S.; Aziz, K. Robotics in neurosurgery: A literature review. J. Pak. Med. Assoc. 2018, 68, 258–263. [Google Scholar] [PubMed]
- Li, J.; Li, Z.; Chen, F.; Bicchi, A.; Sun, Y.; Fukuda, T. Combined sensing, cognition, learning, and control for developing future neuro-robotics systems: A survey. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 148–161. [Google Scholar]
- Tomo, T.P.; Regoli, M.; Schmitz, A.; Natale, L.; Kristanto, H.; Somlor, S.; Jamone, L.; Metta, G.; Sugano, S. A new silicone structure for uSkin—A soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub. IEEE Robot. Autom. Lett. 2018, 3, 2584–2591. [Google Scholar] [CrossRef]
- Sakagami, Y.; Watanabe, R.; Aoyama, C.; Higaki, N.; Fujimura, K. The intelligent ASIMO: System overview and integration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; pp. 2478–2483. [Google Scholar]
- Qiao, H.; Chen, J.; Huang, X. A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems. IEEE Trans. Cybern. 2021, 52, 11267–11280. [Google Scholar] [CrossRef]
- Tang, H.; Huang, W.; Narayanamoorthy, A.; Yan, R. Cognitive memory and mapping in a brain-like system for robotic navigation. Neural Netw. 2017, 87, 27–37. [Google Scholar] [CrossRef]
- Pearson, M.J.; Dora, S.; Struckmeier, O.; Knowles, T.C.; Mitchinson, B.; Tiwari, K.; Kyrki, V.; Bohte, S.; Pennartz, C.M. Multimodal representation learning for place recognition using deep Hebbian predictive coding. Front. Robot. AI 2021, 8, 732023. [Google Scholar] [CrossRef]
- Oliver, G.; Lanillos, P.; Cheng, G. An empirical study of active inference on a humanoid robot. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 462–471. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Lee, S.W.; Seymour, B. Decision-making in brains and robots—The case for an interdisciplinary approach. Curr. Opin. Behav. Sci. 2019, 26, 137–145. [Google Scholar] [CrossRef]
- Di Russo, F.; Berchicci, M.; Bozzacchi, C.; Perri, R.; Pitzalis, S.; Spinelli, D. Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. Neurosci. Biobehav. Rev. 2017, 78, 57–81. [Google Scholar] [CrossRef]
- Coles, M.G. Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology 1989, 26, 251–269. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.W. Use of partial stimulus information in response processing. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Hackley, S. Electrophysiological evidence for temporal overlap among contingent mental processes. J. Exp. Psychol. Gen. 1992, 121, 195. [Google Scholar] [CrossRef] [PubMed]
- Maimon, G.; Assad, J. Parietal area 5 and the initiation of self-timed movements versus simple reactions. J. Neurosci. 2006, 26, 2487–2498. [Google Scholar] [CrossRef] [PubMed]
- Isomura, Y.; Harukuni, R.; Takekawa, T.; Aizawa, H.; Fukai, T. Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat. Neurosci. 2009, 12, 1586–1593. [Google Scholar] [CrossRef]
- Melanson, A.; Mejias, J.; Fun, J.; Maler, L.; Longtin, A. Nonstationary stochastic dynamics underlie spontaneous transitions between active and inactive behavioral states. Eneuro 2017, 4. [Google Scholar] [CrossRef]
- Osman, A.; Bashore, T.; Coles, M.; Donchin, E.; Meyer, D. On the transmission of partial information: Inferences from movement-related brain potentials. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 217. [Google Scholar] [CrossRef]
- van Boxtel, G.; van der Molen, M.; Jennings, J.; Brunia, C. A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biol. Psychol. 2001, 58, 229–262. [Google Scholar] [CrossRef]
- Verbruggen, F.; Logan, G. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef]
- Boucher, L.; Palmeri, T.; Logan, G.; Schall, D. Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychol. Rev. 2007, 114, 376. [Google Scholar] [CrossRef]
- Ko, Y.; Cheng, S.; Juan, C. Voluntarily-generated unimanual preparation is associated with stopping success: Evidence from LRP and lateralized mu ERD before the stop signal. Psychol. Res. 2015, 79, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.; Cowan, W. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984, 91, 295. [Google Scholar] [CrossRef]
- Wadsley, C.G.; Cirillo, J.; Nieuwenhuys, A.; Byblow, W.D. Stopping interference in response inhibition: Behavioral and neural signatures of selective stopping. J. Neurosci. 2022, 42, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Hebb, D. The Organization of Behavior: A Neuropsychological Theory; Wiley & Sons: New York, NY, USA, 1949. [Google Scholar]
- Harris, K. Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 2005, 6, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Huyck, C.; Passmore, P. A review of cell assemblies. Biol. Cybern. 2013, 107, 263–288. [Google Scholar] [CrossRef]
- Bi, G.; Poo, M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- Jones, A.; Silas, J.; Anderson, W.; Ward, E.V. Null effects of temporal prediction on recognition memory but evidence for differential neural activity at encoding. A registered report. Cortex 2023, 169, 130–145. [Google Scholar] [CrossRef]
- Jones, A.; Ward, E.V. Rhythmic temporal structure at encoding enhances recognition memory. J. Cogn. Neurosci. 2019, 31, 1549–1562. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, UK, 2014. [Google Scholar]
- Herrmann, B.; Henry, M.J.; Fromboluti, E.K.; McAuley, J.D.; Obleser, J. Statistical context shapes stimulus-specific adaptation in human auditory cortex. J. Neurophysiol. 2015, 113, 2582–2591. [Google Scholar] [CrossRef]
- Luck, S.J.; Kappenman, E.S. The Oxford Handbook of Event-Related Potential Components; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Gewaltig, M.; Diesmann, M. NEST (NEural Simulation Tool). Scholarpedia 2007, 2, 1430. [Google Scholar] [CrossRef]
- Davison, A.; Bruderle, D.; Eppler, J.; Muller, E.; Pecevski, D.; Perrinet, L.; Yqer, P. PyNN: A common interface for neuronal network simulators. Front. Neuroinformatics 2008, 2, 388. [Google Scholar] [CrossRef] [PubMed]
- Brette, R.; Gerstner, W. Adaptive exponential integrate-and-fire model as an a effective description of neuronal activity. J. Neurophysiol. 2005, 94, 3637–3642. [Google Scholar] [CrossRef] [PubMed]
- Bohland, J.W.; Minai, A.A. Efficient Associative Memory using Small-World Architecture. Neurocomputing 2001, 38, 489–496. [Google Scholar] [CrossRef]
- Wild–Wall, N.; Sangals, J.; Sommer, W.; Leuthold, H. Are fingers special? Evidence about movement preparation from event–related brain potentials. Psychophysiology 2003, 40, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Leuthold, H.; Sommer, W.; Ulrich, R. Partial advance information and response preparation: Inferences from the lateralized readiness potential. J. Exp. Psychol. Gen. 1996, 125, 307–323. [Google Scholar] [CrossRef]
- van Turennout, M.; Hagoort, P.; Brown, C.M. Electrophysiological evidence on the time course of semantic and phonological processes in speech production. J. Exp. Psychol. Learn. Mem. Cogn. 1997, 23, 787–806. [Google Scholar] [CrossRef]
- Van Vugt, M.K.; Simen, P.; Nystrom, L.; Holmes, P.; Cohen, J.D. Lateralized readiness potentials reveal properties of a neural mechanism for implementing a decision threshold. PLoS ONE 2014, 9, e90943. [Google Scholar] [CrossRef]
- Brooks, R. Intelligence without representation. Artif. Intell. 1991, 47, 139–159. [Google Scholar] [CrossRef]
- Watts, D.; Strogatz, S. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Qiao, H.; Wu, Y.; Zhong, S.; Yin, P.; Chen, J. Brain-inspired Intelligent Robotics: Theoretical Analysis and Systematic Application. Mach. Intell. Res. 2023, 20, 1–18. [Google Scholar] [CrossRef]
- Gandhi, V.G.; Prasad, D.C.; Behera, L.; McGinnity, T.M. Quantum neural network based EEG filtering for a Brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 278–288. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, A.; Gandhi, V.; Mahiddine, A.Y.; Huyck, C. Bridging Neuroscience and Robotics: Spiking Neural Networks in Action. Sensors 2023, 23, 8880. https://doi.org/10.3390/s23218880
Jones A, Gandhi V, Mahiddine AY, Huyck C. Bridging Neuroscience and Robotics: Spiking Neural Networks in Action. Sensors. 2023; 23(21):8880. https://doi.org/10.3390/s23218880
Chicago/Turabian StyleJones, Alexander, Vaibhav Gandhi, Adam Y. Mahiddine, and Christian Huyck. 2023. "Bridging Neuroscience and Robotics: Spiking Neural Networks in Action" Sensors 23, no. 21: 8880. https://doi.org/10.3390/s23218880
APA StyleJones, A., Gandhi, V., Mahiddine, A. Y., & Huyck, C. (2023). Bridging Neuroscience and Robotics: Spiking Neural Networks in Action. Sensors, 23(21), 8880. https://doi.org/10.3390/s23218880