Facile Synthesis of Needle-like Copper Sulfide Structures as an Effective Electrochemical Sensor Material for Neurotransmitter Detection in Biological Samples
Abstract
:1. Introduction
2. Materials, Instruments, and Preparation
2.1. Materials and Instruments
2.2. Preparation of Copper Sulfide
2.3. Copper Sulfide Modified with a Glassy Carbon Electrode
2.4. Electrochemical Experimental Methods and Parameters
3. Results and Discussion
3.1. Structural Analysis
3.2. Morphological Study
4. Electrochemical Analysis
4.1. Electrochemical Analysis using Distinctly Modified Electrodes
4.2. Electrochemical Analysis with the Presence of Serotonin (SRN)
4.3. DPV Concentration Investigation
4.4. Selectivity Analysis
4.5. Electrochemical Sensor Parameter Analysis
4.6. Real Sample Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, C.; Wang, X.; Zhu, W.; Han, Q.; Zhu, C.; Hong, J.; Zhou, X.; Jiang, H. Electrochemical Serotonin Sensing Interface Based on Double-Layered Membrane of Reduced Graphene Oxide/Polyaniline Nanocomposites and Molecularly Imprinted Polymers Embedded with Gold Nanoparticles. Sens. Actuators B Chem. 2014, 196, 57–63. [Google Scholar] [CrossRef]
- Panneer Selvam, S.; Yun, K. A Self-Assembled Silver Chalcogenide Electrochemical Sensor Based on RGO-Ag2Se for Highly Selective Detection of Serotonin. Sens. Actuators B Chem. 2020, 302, 127161. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Lu, K.; Ye, B. A Simple but Highly Sensitive and Selective Calixarene-Based Voltammetric Sensor for Serotonin. Electrochim. Acta 2013, 87, 756–762. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, H.K.; You, J.M.; Jeong, H.; Jeon, S. Electrochemical Biosensor for Simultaneous Determination of Dopamine and Serotonin Based on Electrochemically Reduced GO-Porphyrin. Sens. Actuators B Chem. 2014, 190, 886–895. [Google Scholar] [CrossRef]
- Nataraj, N.; Chen, T.W.; Chen, S.M.; Tseng, T.W.; Bian, Y.; Sun, T.T.; Jiang, J. Metal-Organic Framework (ZIF-67) Interwoven Multiwalled Carbon Nanotubes as a Sensing Platform for Rapid Administration of Serotonin. J. Taiwan Inst. Chem. Eng. 2021, 129, 299–310. [Google Scholar] [CrossRef]
- Cesarino, I.; Galesco, H.V.; Machado, S.A.S. Determination of Serotonin on Platinum Electrode Modified with Carbon Nanotubes/Polypyrrole/Silver Nanoparticles Nanohybrid. Mater. Sci. Eng. C 2014, 40, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; et al. A Disposable Electrochemical Sensor for Simultaneous Determination of Norepinephrine and Serotonin in Rat Cerebrospinal Fluid Based on MWNTs-ZnO/Chitosan Composites Modified Screen-Printed Electrode. Biosens. Bioelectron. 2015, 65, 31–38. [Google Scholar] [CrossRef]
- Ran, G.; Chen, C.; Gu, C. Serotonin Sensor Based on a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes, Chitosan and Poly(p-Aminobenzenesulfonate). Microchim. Acta 2015, 182, 1323–1328. [Google Scholar] [CrossRef]
- Santhan, A.; Hwa, K.Y. Zinc Phosphate-Incorporated Niobium Carbide as an Effective Electrocatalyst for Ultrasensitive and Selective Monitoring of Monoamine Neurotransmitter. ACS Sustain. Chem. Eng. 2023, 11, 4329–4341. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, C.; Chen, M.M.; Wang, S.; Fu, L.; Zhang, X. Structure Modulation of Two-Dimensional Transition Metal Chalcogenides: Recent Advances in Methodology, Mechanism and Applications. Chem. Soc. Rev. 2023, 52, 1215–1272. [Google Scholar] [CrossRef]
- Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. Review of Metal Sulfide Nanostructures and Their Applications. ACS Appl. Nano Mater. 2023, 6, 7077–7106. [Google Scholar] [CrossRef]
- Rajapriya, A.; Keerthana, S.; Viswanathan, C.; Ponpandian, N. Direct Growth of MoS2 Hierarchical Nanoflowers on Electrospun Carbon Nanofibers as an Electrode Material for High-Performance Supercapacitors. J. Alloys Compd. 2021, 859, 157771. [Google Scholar] [CrossRef]
- Keerthana, S.; Rajapriya, A.; Viswanathan, C.; Ponpandian, N. Hybrid Nanostructures of WS2 Nanoflowers on N, B Co-Doped RGO for Sensitive Amperometric Detection of Nilutamide. Mater. Today Chem. 2022, 26, 101052. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, P.; Zhang, D.; Tang, L. Nickel Cobalt Sulfide Composite Nanosheet Anchored on RGO as Effective Electrode for Quasi-Solid Supercapacitor. J. Energy Storage 2023, 70, 107938. [Google Scholar] [CrossRef]
- Chanda, D.; Kannan, K.; Gautam, J.; Meshesha, M.M.; Jang, S.G.; Dinh, V.A.; Yang, B.L. Effect of the Interfacial Electronic Coupling of Nickel-Iron Sulfide Nanosheets with Layer Ti3C2 MXenes as Efficient Bifunctional Electrocatalysts for Anion-Exchange Membrane Water Electrolysis. Appl. Catal. B Environ. 2023, 321, 122039. [Google Scholar] [CrossRef]
- Shi, F.; Zheng, W.; Wang, W.; Hou, F.; Lei, B.; Sun, Z.; Sun, W. Application of Graphene-Copper Sulfide Nanocomposite Modified Electrode for Electrochemistry and Electrocatalysis of Hemoglobin. Biosens. Bioelectron. 2015, 64, 131–137. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Sahoo, S.; Nguyen, T.T.; Lokhande, C.D.; Roh, C.; Lee, Y.R.; Shim, J.J. Chemical Synthesis of 3D Copper Sulfide with Different Morphologies for High Performance Supercapacitors Application. RSC Adv. 2016, 6, 14844–14851. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured Copper Sulfides: Synthesis, Properties and Applications. CrystEngComm 2015, 17, 7801–7815. [Google Scholar] [CrossRef]
- Niu, H.; Liu, Y.; Mao, B.; Xin, N.; Jia, H.; Shi, W. In-Situ Embedding MOFs-Derived Copper Sulfide Polyhedrons in Carbon Nanotube Networks for Hybrid Supercapacitor with Superior Energy Density. Electrochim. Acta 2020, 329, 135130. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Jiang, Y.; Chen, M.; Ding, Y.; Liu, Q. A Facile Preparation of Montmorillonite-Supported Copper Sulfide Nanocomposites and Their Application in the Detection of H2O2. Sens. Actuators B Chem. 2017, 239, 28–35. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Nie, W.; Wang, Y.; Gao, J.; Wen, W.; Selvaraj, J.N.; Zhang, X.; Wang, S. Hollow Copper Sulfide Nanocubes as Multifunctional Nanozymes for Colorimetric Detection of Dopamine and Electrochemical Detection of Glucose. Biosens. Bioelectron. 2019, 141, 111450. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and Applications of Copper Sulfide (CuS) Nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Kim, H.Y.; Kim, B.S. A Novel CuS Microflower Superstructure Based Sensitive and Selective Nonenzymatic Glucose Detection. Sens. Actuators B Chem. 2016, 233, 93–99. [Google Scholar] [CrossRef]
- Kim, W.B.; Lee, S.H.; Cho, M.; Lee, Y. Facile and Cost-Effective CuS Dendrite Electrode for Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 249, 161–167. [Google Scholar] [CrossRef]
- Sun, S.; Li, P.; Liang, S.; Yang, Z. Diversified Copper Sulfide (Cu2-XS) Micro-/Nanostructures: A Comprehensive Review on Synthesis, Modifications and Applications. Nanoscale 2017, 9, 11357–11404. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, N.; Zhang, X.; Wang, Y.; Zhou, S.; Zhang, L.; Zhou, M.; Hu, G. Flower-like Copper Sulfide-Decorated Boron-Nitrogen Co-Doped Carbon-Modified Glassy Carbon Electrode for Selective and Sensitive Electrochemical Detection of Nitrobenzene in Natural Water. Colloids Surf. A Physicochem. Eng. Asp. 2023, 675, 132011. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Waterhouse, G.I.N.; Gao, H.; Xu, Z. Highly Selective Molecularly Imprinted Gel-Based Electrochemical Sensor with CuS@COOH-MWCNTs Signal Amplification for Simultaneous Detection of Vanillin and Tartrazine in Foods. Sens. Actuators B Chem. 2023, 377, 133045. [Google Scholar] [CrossRef]
- Tetyana, P.; Mphuthi, N.; Jijana, A.N.; Moloto, N.; Shumbula, P.M.; Skepu, A.; Vilakazi, L.S.; Sikhwivhilu, L. Synthesis, Characterization, and Electrochemical Evaluation of Copper Sulfide Nanoparticles and Their Application for Non-Enzymatic Glucose Detection in Blood Samples. Nanomaterials 2023, 13, 481. [Google Scholar] [CrossRef]
- Peng, J.; Han, X.X.; Zhang, Q.C.; Yao, H.Q.; Gao, Z.N. Copper Sulfide Nanoparticle-Decorated Graphene as a Catalytic Amplification Platform for Electrochemical Detection of Alkaline Phosphatase Activity. Anal. Chim. Acta 2015, 878, 87–94. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, Z.; Qu, W.; Huang, J.; He, W.; Yang, J.; Yang, W.; Tian, M.; Xu, Z.; Li, H. Mechanochemical Preparation of Well-Structured Copper Sulfide for Elemental Mercury Sequestration from Coal Combustion Flue Gas. Chem. Eng. J. 2023, 452, 139278. [Google Scholar] [CrossRef]
- Savarimuthu, I.; Susairaj, M.J.A.M. CuS Nanoparticles Trigger Sulfite for Fast Degradation of Organic Dyes under Dark Conditions. ACS Omega 2022, 7, 4140–4149. [Google Scholar] [CrossRef] [PubMed]
- Tarachand; Hussain, S.; Lalla, N.P.; Kuo, Y.K.; Lakhani, A.; Sathe, V.G.; Deshpande, U.; Okram, G.S. Thermoelectric Properties of Ag-Doped CuS Nanocomposites Synthesized by a Facile Polyol Method. Phys. Chem. Chem. Phys. 2018, 20, 5926–5935. [Google Scholar] [CrossRef] [PubMed]
- Hurma, T.; Kose, S. XRD Raman Analysis and Optical Properties of CuS Nanostructured Film. Optik 2016, 127, 6000–6006. [Google Scholar] [CrossRef]
- Shalabayev, Z.; Baláž, M.; Daneu, N.; Dutková, E.; Bujňáková, Z.; Kaňuchová, M.; Danková, Z.; Balážová, Ĺ.; Urakaev, F.; Tkáčiková, Ĺ.; et al. Sulfur-Mediated Mechanochemical Synthesis of Spherical and Needle-Like Copper Sulfide Nanocrystals with Antibacterial Activity. ACS Sustain. Chem. Eng. 2019, 7, 12897–12909. [Google Scholar] [CrossRef]
- Samdhyan, K.; Chand, P.; Anand, H. Effective Doping of Phosphorus in Copper Sulfide for High Performance Energy Storage Devices. J. Alloys Compd. 2023, 936, 168322. [Google Scholar] [CrossRef]
- Dang, J.; Yin, M.; Pan, D.; Tian, Z.; Chen, G.; Zou, J.; Miao, H.; Wang, Q.; Yuan, J. Four-Functional Iron/Copper Sulfide Heterostructure for Alkaline Hybrid Zinc Batteries and Water Splitting. Chem. Eng. J. 2023, 457, 141357. [Google Scholar] [CrossRef]
- Nataraj, N.; Chen, T.W.; Gan, Z.W.; Chen, S.M.; Lou, B.S.; Ali, M.A.; Al-Hemaid, F.M. Two-Dimensional Copper Oxide/Zinc Oxide Nanoflakes with Three-Dimensional Flower-like Heterostructure Enhanced with Electrocatalytic Activity toward Nimesulide Detection. Mater. Today Chem. 2022, 24, 100768. [Google Scholar] [CrossRef]
- Santhan, A.; Hwa, K.Y. Rational Design of Nanostructured Copper Phosphate Nanoflakes Supported Niobium Carbide for the Selective Electrochemical Detection of Melatonin. ACS Appl. Nano Mater. 2022, 5, 18256–18269. [Google Scholar] [CrossRef]
- Das, M.; Das, D.; Sil, S.; Ray, P.P. Development of Hierarchical Copper Sulfide–Carbon Nanotube (CuS–CNT) Composites and Utilization of Their Superior Carrier Mobility in Efficient Charge Transport towards Photodegradation of Rhodamine B under Visible Light. Nanoscale Adv. 2023, 5, 3655–3663. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Y.; Zhang, B.; Song, S.; Zhou, Z.; Huang, Y.; Zhao, Z. Magnetic Grinding Synthesis of Copper Sulfide-Based Photocatalytic Composites for the Degradation of Organic Dyes under Visible Light. New J. Chem. 2023, 47, 2286–2295. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Y.; Cheng, H.; Wu, J.; Jin, B. Development of Copper Sulfide Functionalized CeO2 Nanoparticle for Strengthened Removal of Gaseous Elemental Mercury from Flue Gas. Chem. Eng. J. 2023, 453, 139773. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, G.; Huang, J.; Chen, W.; Han, T.; Li, T.; Ken Ostrikov, K. Oxygen Evolution Catalyzed by Ni-Co-Nb Ternary Metal Sulfides on Plasma-Activated Ni-Co Support. J. Colloid Interface Sci. 2024, 653, 117–128. [Google Scholar] [CrossRef]
- Shahid, M.M.; Rameshkumar, P.; Numan, A.; Shahabuddin, S.; Alizadeh, M.; Khiew, P.S.; Chiu, W.S. A Cobalt Oxide Nanocubes Interleaved Reduced Graphene Oxide Nanocomposite Modified Glassy Carbon Electrode for Amperometric Detection of Serotonin. Mater. Sci. Eng. C 2019, 100, 388–395. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Baharifar, H.; Torabi, F.; Sadeghi Afjeh, M.; Maleki, H.; Honarvarfard, E.; Mohammadi, H.; Sajjadi-Jazi, S.M.; Mahmoudi-Kohan, S.; Faridbod, F.; et al. Serotonin Level as a Potent Diabetes Biomarker Based on Electrochemical Sensing: A New Approach in a Zebra Fish Model. Anal. Bioanal. Chem. 2021, 413, 1615–1627. [Google Scholar] [CrossRef]
- Banu, R.; Swamy, B.E.K.; Deepa, S. Poly (Fast Sulphone Black F) Modified Pencil Graphite Electrode Sensor for Serotonin. Sens. Int. 2020, 1, 100044. [Google Scholar] [CrossRef]
Prepared Nanomaterial | The Mean Crystal Size D (nm): Scherrer Formula | The Mean Crystal Size D (nm): W–H Approaches | The Average Micro Strain (×10−3) | The Average Dislocation Density δ |
---|---|---|---|---|
Cu2S | 25.92 | 26.87 | 4.98 | 4.56 |
Material | Method | Linear Range (µM) | Limit of Detection (µM) | Ref. |
---|---|---|---|---|
Pt/MWCNT/PPy/AuNPs | DPV | 0.50–5.0 | 0.15 | [6] |
rGO-Co3O4 | Amperometry (IT) | 1–10 | 1.128 | [43] |
rGO-Ag2Se/GCE | DPV | 0.1–15 | 0.029 | [2] |
rGO-AuNPs | SWV | 0.4–10 | 0.04 | [44] |
ZIF-67/MWCNT | Amperometry (IT) | 0.049–800 | 0.007 | [5] |
Poly (FSBF)MPGE | CV | 10–50 | 1.7 | [45] |
Cu2S/GCE | DPV | 0.029 to 607.6 | 0.0032 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhan, A.; Hwa, K.-Y. Facile Synthesis of Needle-like Copper Sulfide Structures as an Effective Electrochemical Sensor Material for Neurotransmitter Detection in Biological Samples. Sensors 2023, 23, 8849. https://doi.org/10.3390/s23218849
Santhan A, Hwa K-Y. Facile Synthesis of Needle-like Copper Sulfide Structures as an Effective Electrochemical Sensor Material for Neurotransmitter Detection in Biological Samples. Sensors. 2023; 23(21):8849. https://doi.org/10.3390/s23218849
Chicago/Turabian StyleSanthan, Aravindan, and Kuo-Yuan Hwa. 2023. "Facile Synthesis of Needle-like Copper Sulfide Structures as an Effective Electrochemical Sensor Material for Neurotransmitter Detection in Biological Samples" Sensors 23, no. 21: 8849. https://doi.org/10.3390/s23218849
APA StyleSanthan, A., & Hwa, K.-Y. (2023). Facile Synthesis of Needle-like Copper Sulfide Structures as an Effective Electrochemical Sensor Material for Neurotransmitter Detection in Biological Samples. Sensors, 23(21), 8849. https://doi.org/10.3390/s23218849