Review of Miniaturized Computational Spectrometers
Abstract
:1. Introduction
2. General Principles of Miniaturized Computational Spectrometers
2.1. Architecture of Miniaturized Computational Spectrometers
2.2. Compressive Sensing
3. Encoder
3.1. Fiber
3.2. Waveguide
3.3. Random Structure
3.4. Nanowire
3.5. Photonic Crystal
3.6. Quantum Dot
3.7. Metasurface
3.8. Inverse Design of Encoder
3.9. Tunable Devices
3.9.1. Fourier Transform Spectrometer
3.9.2. Microelectromechanical Systems
3.9.3. Thermal Tuning
3.9.4. Other Tuning Methods
4. Decoder
4.1. Singular Value Decomposition
4.2. Convex Optimization
4.3. Regularization
4.4. Dictionary Learning
- 1.
- Sparse approximation: the dictionary is kept and optimizes the sparse representation ;
- 2.
- Dictionary update: the dictionary is updated after getting the sparse representation.
4.5. Deep Learning
5. Applications
5.1. Industrial Applications
5.1.1. Biosensing
5.1.2. Chemical Sensing
5.2. Consumer Devices
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Schliesser, A.; Brehm, M.; Keilmann, F.; van der Weide, D.W. Frequency-Comb Infrared Spectrometer for Rapid, Remote Chemical Sensing. Opt. Express 2005, 13, 9029–9038. [Google Scholar] [CrossRef] [PubMed]
- Szkoda, J.; Zmudzki, J. Determination of Lead and Cadmium in Biological Material by Graphite Furnace Atomic Absorption Spectrometry Method. Bull. Vet. Inst. Pulawy 2005, 49, 89–92. [Google Scholar]
- Ozbek, N.; Akman, S. Determination of Fluorine in Turkish Wines by Molecular Absorbance of CaF Using a High Resolution Continuum Source Atomic Absorption Spectrometer. LWT-Food Sci. Technol. 2015, 61, 112–116. [Google Scholar] [CrossRef]
- Száková, J.; Kolihová, D.; Miholová, D.; Mader, P. Single-Purpose Atomic Absorption Spectrometer AMA-254 for Mercury Determination and Its Performance in Analysis of Agricultural and Environmental Materials. Chem. Pap. 2004, 58, 311–315. [Google Scholar] [CrossRef]
- Fara, P. Newton Shows the Light: A Commentary on Newton (1672) ‘A Letter … Containing His New Theory about Light and Colours…’. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20140213. [Google Scholar] [CrossRef]
- Souza, M.C.M.M.; Grieco, A.; Frateschi, N.C.; Fainman, Y. Fourier Transform Spectrometer on Silicon with Thermo-Optic Non-Linearity and Dispersion Correction. Nat. Commun. 2018, 9, 665. [Google Scholar] [CrossRef]
- Lim, Z.H.; Qi, Y.; Zhou, G.; Senthil Kumar, A.; Lee, C.; Zhou, G. Cascaded, Self-Calibrated, Single-Pixel Mid-Infrared Hadamard Transform Spectrometer. Opt. Express 2021, 29, 34600. [Google Scholar] [CrossRef]
- Zou, J.; Li, L.; Wang, C.; Zhuang, Y.; Wang, X.; Hu, J.; Luo, S.; He, J.-J. Novel High-Resolution and Large-Bandwidth Micro-Spectrometer Using Multi-Input Counter-Propagating Arrayed Waveguide Grating and Dual-Wavelength Grating Coupler on Silicon on Insulator. Laser Photonics Rev. 2023, 17, 2200355. [Google Scholar] [CrossRef]
- Baek, S.-H.; Ikoma, H.; Jeon, D.S.; Li, Y.; Heidrich, W.; Wetzstein, G.; Kim, M.H. Single-Shot Hyperspectral-Depth Imaging with Learned Diffractive Optics. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2631–2640. [Google Scholar]
- Cui, Q.; Park, J.; Ma, Y.; Gao, L. Snapshot Hyperspectral Light Field Tomography. Optica 2021, 8, 1552. [Google Scholar] [CrossRef]
- Monakhova, K.; Yanny, K.; Aggarwal, N.; Waller, L. Spectral DiffuserCam: Lensless Snapshot Hyperspectral Imaging with a Spectral Filter Array. Optica 2020, 7, 1298. [Google Scholar] [CrossRef]
- Zhang, W.; Song, H.; He, X.; Huang, L.; Zhang, X.; Zheng, J.; Shen, W.; Hao, X.; Liu, X. Deeply Learned Broadband Encoding Stochastic Hyperspectral Imaging. Light Sci. Appl. 2021, 10, 108. [Google Scholar] [CrossRef]
- Wolffenbuttel, R.F. State-of-the-Art in Integrated Optical Microspectrometers. IEEE Trans. Instrum. Meas. 2004, 53, 197–202. [Google Scholar] [CrossRef]
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of Optical Spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Qu, Y.; Wang, L.; Yu, Z. Computational Spectrometers Enabled by Nanophotonics and Deep Learning. Nanophotonics 2022, 11, 2507–2529. [Google Scholar] [CrossRef]
- Li, A.; Yao, C.; Xia, J.; Wang, H.; Cheng, Q.; Penty, R.; Fainman, Y.; Pan, S. Advances in Cost-Effective Integrated Spectrometers. Light Sci. Appl. 2022, 11, 174. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Su, Y.; Chen, H. Recent Progress in Optical Biosensors Based on Smartphone Platforms. Sensors 2017, 17, 2449. [Google Scholar] [CrossRef]
- Lapray, P.-J.; Wang, X.; Thomas, J.-B.; Gouton, P. Multispectral Filter Arrays: Recent Advances and Practical Implementation. Sensors 2014, 14, 21626–21659. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lee, H.-N. On the Estimation of Target Spectrum for Filter-Array Based Spectrometers. Opt. Express 2008, 16, 1056. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.-B.; Lee, H.-N. Filters with Random Transmittance for Improving Resolution in Filter-Array-Based Spectrometers. Opt. Express 2013, 21, 3969. [Google Scholar] [CrossRef]
- Huang, E.; Ma, Q.; Liu, Z. Etalon Array Reconstructive Spectrometry. Sci. Rep. 2017, 7, 40693. [Google Scholar] [CrossRef]
- Rani, M.; Dhok, S.B.; Deshmukh, R.B. A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications. IEEE Access 2018, 6, 4875–4894. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Z. Spectral Analysis Based on Compressive Sensing in Nanophotonic Structures. Opt. Express 2014, 22, 25608–25614. [Google Scholar] [CrossRef] [PubMed]
- Hang, Q.; Ung, B.; Syed, I.; Guo, N.; Skorobogatiy, M. Photonic Bandgap Fiber Bundle Spectrometer. Conf. Lasers Electro-Opt. CLEO 2012, 49, 4791–4800. [Google Scholar] [CrossRef]
- Redding, B.; Popoff, S.M.; Cao, H. All-Fiber Spectrometer Based on Speckle Pattern Reconstruction. Opt. Express 2013, 21, 6584. [Google Scholar] [CrossRef]
- Redding, B.; Alam, M.; Seifert, M.; Cao, H. High-Resolution and Broadband All-Fiber Spectrometers. Optica 2014, 1, 175. [Google Scholar] [CrossRef]
- Liew, S.F.; Redding, B.; Choma, M.A.; Tagare, H.D.; Cao, H. Broadband Multimode Fiber Spectrometer. Opt. Lett. 2016, 41, 2029. [Google Scholar] [CrossRef]
- Li, L.; Peng, C.; Qi, Y.; Zhou, G.; Qiao, Q.; Chau, F.S.; Zhou, G. Design of an On-Chip Fourier Transform Spectrometer Using Waveguide Directional Couplers and NEMS. Opt. Express 2018, 26, 30362. [Google Scholar] [CrossRef] [PubMed]
- Sander, D.; Duecker, M.-O.; Blume, O.; Mueller, J. Optical Microspectrometer in SiON Slab Waveguides. In Proceedings of the Integrated Optics and Microstructures III, San Jose, CA, USA, 29 January 1996; SPIE: Philadelphia, PA, USA, 1996; Volume 2686, pp. 100–107. [Google Scholar]
- Sander, D.; Müller, J. Selffocussing Phase Transmission Grating for an Integrated Optical Microspectrometer. Sens. Actuators Phys. 2001, 88, 1–9. [Google Scholar] [CrossRef]
- Goldman, D.S.; White, P.; Anheier, N. Miniaturized Spectrometer Employing Planar Waveguides and Grating Couplers for Chemical Analysis. Appl. Opt. 1990, 29, 4583–4589. [Google Scholar] [CrossRef]
- Zou, J.; Lang, T.; Le, Z.; He, J.-J. Ultracompact Silicon-on-Insulator-Based Reflective Arrayed Waveguide Gratings for Spectroscopic Applications. Appl. Opt. 2016, 55, 3531–3536. [Google Scholar] [CrossRef] [PubMed]
- Cheben, P.; Schmid, J.H.; Delâge, A.; Densmore, A.; Janz, S.; Lamontagne, B.; Lapointe, J.; Post, E.; Waldron, P.; Xu, D.-X. A High-Resolution Silicon-on-Insulator Arrayed Waveguide Grating Microspectrometer with Sub-Micrometer Aperture Waveguides. Opt. Express 2007, 15, 2299. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, A.; Doerr, C.R.; Ali, Z.; Karabiyik, M.; Akca, B.I. Compact Ultrabroad-Bandwidth Cascaded Arrayed Waveguide Gratings. Opt. Express 2020, 28, 14618–14626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Wang, J.; Yi, D.; Chan, D.W.U.; Yuan, W.; Tsang, H.K. Integrated Scanning Spectrometer with a Tunable Micro-Ring Resonator and an Arrayed Waveguide Grating. Photonics Res. 2022, 10, A74–A81. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, X.; Zhang, M.; Yan, X. A High-Resolution Miniaturized Ultraviolet Spectrometer Based on Arrayed Waveguide Grating and Microring Cascade Structures. Opt. Commun. 2021, 482, 126591. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. Tandem Configuration of Microrings and Arrayed Waveguide Gratings for a High-Resolution and Broadband Stationary Optical Spectrometer at 860 Nm. ACS Photonics 2021, 8, 1251–1257. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. Ultracompact 40-Channel Arrayed Waveguide Grating on Silicon Nitride Platform at 860 Nm. IEEE J. Quantum Electron. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Li, A.; Fainman, Y. On-Chip Spectrometers Using Stratified Waveguide Filters. Nat. Commun. 2021, 12, 2704. [Google Scholar] [CrossRef]
- Densmore, A.; Xu, D.-X.; Janz, S.; Waldron, P.; Mischki, T.; Lopinski, G.; Delâge, A.; Lapointe, J.; Cheben, P.; Lamontagne, B.; et al. Spiral-Path High-Sensitivity Silicon Photonic Wire Molecular Sensor with Temperature-Independent Response. Opt. Lett. 2008, 33, 596. [Google Scholar] [CrossRef]
- Redding, B.; Fatt Liew, S.; Bromberg, Y.; Sarma, R.; Cao, H. Evanescently Coupled Multimode Spiral Spectrometer. Optica 2016, 3, 956. [Google Scholar] [CrossRef]
- Piels, M.; Zibar, D. Compact Silicon Multimode Waveguide Spectrometer with Enhanced Bandwidth. Sci. Rep. 2017, 7, 43454. [Google Scholar] [CrossRef]
- Hornig, G.J.; Harrison, T.R.; Bu, L.; Azmayesh-Fard, S.; Decorby, R.G. Wavemeter Based on Dispersion and Speckle in a Tapered Hollow Waveguide. OSA Contin. 2019, 2, 495–506. [Google Scholar] [CrossRef]
- Civitci, F.; Hoekstra, H. Design of Spectrometers and Polarization Splitters Using Adiabatically Connected Slab Waveguides. In Proceedings of the 16th European Conference on Integrated Optics, ECIO 2012, Sitges/Barcelona, Spain, 18–20 April 2012. [Google Scholar]
- Redding, B.; Liew, S.F.; Sarma, R.; Cao, H. Compact Spectrometer Based on a Disordered Photonic Chip. Nat. Photonics 2013, 7, 746–751. [Google Scholar] [CrossRef]
- Hartmann, W.; Varytis, P.; Gehring, H.; Walter, N.; Beutel, F.; Busch, K.; Pernice, W. Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder. Adv. Opt. Mater. 2020, 8, 1901602. [Google Scholar] [CrossRef]
- Liu, T.; Fiore, A. Designing Open Channels in Random Scattering Media for On-Chip Spectrometers. Optica 2020, 7, 934–939. [Google Scholar] [CrossRef]
- Sun, Q.; Falak, P.; Vettenburg, T.; Lee, T.; Phillips, D.B.; Brambilla, G.; Beresna, M. Compact Nano-Void Spectrometer Based on a Stable Engineered Scattering System. Photonics Res. 2022, 10, 2328–2336. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, Q.; Cheng, R.; Liang, Y.; Pan, S.; Li, A. Ultra-Compact Optical Spectrometer Based on Silicon Random Medium. In Proceedings of the Optoelectronic Devices and Integration, Nantong, China, 10–20 October 2021; SPIE: Nantong, China, 2021; p. 43. [Google Scholar]
- Kim, M.; Choi, Y.; Yoon, C.; Choi, W.; Kim, J.; Park, Q.-H.; Choi, W. Maximal Energy Transport through Disordered Media with the Implementation of Transmission Eigenchannels. Nat. Photonics 2012, 6, 581–585. [Google Scholar] [CrossRef]
- Kwak, Y.; Park, S.M.; Ku, Z.; Urbas, A.; Kim, Y.L. A Pearl Spectrometer. Nano Lett. 2021, 21, 921–930. [Google Scholar] [CrossRef]
- Fan, P.; Yu, Z.; Fan, S.; Brongersma, M.L. Optical Fano Resonance of an Individual Semiconductor Nanostructure. Nat. Mater. 2014, 13, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Salhi, B.; Hossain, M.K.; Mukhaimer, A.W.; Al-Sulaiman, F.A. Nanowires: A New Pathway to Nanotechnology-Based Applications. J. Electroceram. 2016, 37, 34–49. [Google Scholar] [CrossRef]
- Tian, B.; Kempa, T.J.; Lieber, C.M. Single Nanowire Photovoltaics. Chem. Soc. Rev. 2008, 38, 16–24. [Google Scholar] [CrossRef]
- Yang, Z.; Albrow-Owen, T.; Cui, H.; Alexander-Webber, J.; Gu, F.; Wang, X.; Wu, T.-C.; Zhuge, M.; Williams, C.; Wang, P.; et al. Single-Nanowire Spectrometers. Science 2019, 365, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Cadusch, J.J.; Crozier, K.B. Detector-Only Spectrometer Based on Structurally Colored Silicon Nanowires and a Reconstruction Algorithm. Nano Lett. 2020, 20, 320–328. [Google Scholar] [CrossRef]
- Vukusic, P.; Sambles, J.R. Photonic Structures in Biology. Nature 2003, 424, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Seo, K.; Takei, K.; Meza, J.H.; Javey, A.; Crozier, K.B. Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires. Nano Lett. 2011, 11, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B. On-Chip Measurement of Photoluminescence with High Sensitivity Monolithic. Adv. Opt. Mater. 2020, 11, 2527–2532. [Google Scholar] [CrossRef]
- Cheng, R.; Zou, C.-L.; Guo, X.; Wang, S.; Han, X.; Tang, H.X. Broadband On-Chip Single-Photon Spectrometer. Nat. Commun. 2019, 10, 4104. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhao, Q.; Wang, H.; Guo, J.; Lu, H.; Hao, H.; Guo, S.; Tu, X.; Zhang, L.; Jia, X.; et al. Single-Detector Spectrometer Using a Superconducting Nanowire. Nano Lett. 2021, 21, 9625–9632. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, Y.; Hu, M.; Zhao, Y.; Li, H.; You, L.; Feng, X.; Liu, F.; Cui, K.; Huang, Y.; et al. Photon Counting Reconstructive Spectrometer Combining Metasurfaces and Superconducting Nanowire Single-Photon Detectors. Photonics Res. 2023, 11, 234. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1991; pp. 384–422. ISBN 978-0-471-21374-1. [Google Scholar]
- Momeni, B.; Hosseini, E.S.; Adibi, A. Planar Photonic Crystal Microspectrometers in Silicon-Nitride for the Visible Range. Opt. Express 2009, 17, 17060. [Google Scholar] [CrossRef]
- Pervez, N.K.; Cheng, W.; Jia, Z.; Cox, M.P.; Edrees, H.M.; Kymissis, I. Photonic Crystal Spectrometer. Opt. Express 2010, 18, 8277. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Pervez, N.; Kymissis, I.; Hatami, F.; Englund, D. A High-Resolution Spectrometer Based on a Compact Planar Two Dimensional Photonic Crystal Cavity Array. Appl. Phys. Lett. 2012, 100, 231104. [Google Scholar] [CrossRef]
- Meng, F.; Shiue, R.-J.; Wan, N.; Li, L.; Nie, J.; Harris, N.C.; Chen, E.H.; Schröder, T.; Pervez, N.; Kymissis, I.; et al. Waveguide-Integrated Photonic Crystal Spectrometer with Camera Readout. Appl. Phys. Lett. 2014, 105, 051103. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, S.; Chen, A.; Zhou, M.; Luk, T.S.; James, A.; Nogan, J.; Ross, W.; Joe, G.; Shahsafi, A.; et al. Single-Shot on-Chip Spectral Sensors Based on Photonic Crystal Slabs. Nat. Commun. 2019, 10, 1020. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lei, X.; Wang, K.X.; Yu, Z. Compact CMOS Spectral Sensor for the Visible Spectrum. Photonics Res. 2019, 7, 961. [Google Scholar] [CrossRef]
- Zhang, W.; Serna, S.; Le Roux, X.; Vivien, L.; Cassan, E. Silicon Nanobeam Cavity for Ultra-Localized Light-Matter Interaction. Opt. Lett. 2017, 42, 3323. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Z.; Dong, J.; Zhang, X. Cascaded Nanobeam Spectrometer with High Resolution and Scalability. Optica 2022, 9, 517. [Google Scholar] [CrossRef]
- Li, T.; Gao, D.; Zhang, D.; Cassan, E. High-Q and High-Sensitivity One-Dimensional Photonic Crystal Slot Nanobeam Cavity Sensors. IEEE Photonics Technol. Lett. 2016, 28, 689–692. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, Y.; Zhang, J.; Zhou, H.; Gao, D.; Dong, J.; Zhang, X. Generalized Modular Spectrometers Combining a Compact Nanobeam Microcavity and Computational Reconstruction. ACS Photonics 2022, 9, 74–81. [Google Scholar] [CrossRef]
- Bao, J.; Bawendi, M.G. A Colloidal Quantum Dot Spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef]
- Zhu, X.; Bian, L.; Fu, H.; Wang, L.; Zou, B.; Dai, Q.; Zhang, J.; Zhong, H. Broadband Perovskite Quantum Dot Spectrometer beyond Human Visual Resolution. Light Sci. Appl. 2020, 9, 73. [Google Scholar] [CrossRef]
- Li, H.; Bian, L.; Gu, K.; Fu, H.; Yang, G.; Zhong, H.; Zhang, J. A Near-Infrared Miniature Quantum Dot Spectrometer. Adv. Opt. Mater. 2021, 9, 2100376. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.; Bao, J. Solver-Informed Neural Networks for Spectrum Reconstruction of Colloidal Quantum Dot Spectrometers. Opt. Express 2020, 28, 33656. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.; Bao, J. Denoising Autoencoder Aided Spectrum Reconstruction for Colloidal Quantum Dot Spectrometers. IEEE Sens. J. 2021, 21, 6450–6458. [Google Scholar] [CrossRef]
- Khan, S.A.; Ellerbee Bowden, A.K. Colloidal Quantum Dots for Cost-Effective, Miniaturized, and Simple Spectrometers. Clin. Chem. 2016, 62, 548–550. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-Based Molecular Barcoding with Pixelated Dielectric Metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-T.; Taylor, A.J.; Yu, N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.Y.; Chen, W.-T.; Khorasaninejad, M.; Oh, J.; Zaidi, A.; Mishra, I.; Devlin, R.C.; Capasso, F. Ultra-Compact Visible Chiral Spectrometer with Meta-Lenses. APL Photonics 2017, 2, 036103. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Xiong, J.; Cai, X.; Cui, K.; Huang, Y.; Yang, J.; Zhu, H.; Li, W.; Hong, B.; Rao, S.; Zheng, Z.; et al. Dynamic Brain Spectrum Acquired by a Real-Time Ultraspectral Imaging Chip with Reconfigurable Metasurfaces. Optica 2022, 9, 461. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Chen, W.T.; Sisler, J.; Yousef, K.M.; Lee, E.; Huang, Y.-W.; Qiu, C.-W.; Capasso, F. Compact Aberration-Corrected Spectrometers in the Visible Using Dispersion-Tailored Metasurfaces. Adv. Opt. Mater. 2019, 7, 1801144. [Google Scholar] [CrossRef]
- Faraji-Dana, M.; Arbabi, E.; Arbabi, A.; Kamali, S.M.; Kwon, H.; Faraon, A. Compact Folded Metasurface Spectrometer. Nat. Commun. 2018, 9, 4196. [Google Scholar] [CrossRef]
- Hu, C.; Zheng, S.; Zhong, Q.; Dong, Y.; Hu, T.; Xu, Z. Design of a Computational Microspectrometer Based on Metasurfaces and Multilayer Thin Films. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 1537–1542. [Google Scholar]
- Zhang, Z.; Liu, Y.; Wang, Z.; Zhang, Y.; Guo, X.; Xiao, S.; Xu, K.; Song, Q. Folded Digital Meta-Lenses for on-Chip Spectrometer. Nano Lett. 2023, 23, 3459–3466. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, R.; Ma, Y. Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens. Appl. Sci. 2018, 8, 321. [Google Scholar] [CrossRef]
- Craig, B.; Shrestha, V.R.; Meng, J.; Cadusch, J.J.; Crozier, K.B. Experimental Demonstration of Infrared Spectral Reconstruction Using Plasmonic Metasurfaces. Opt. Lett. 2018, 43, 4481. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse Design in Nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Hadibrata, W.; Noh, H.; Wei, H.; Krishnaswamy, S.; Aydin, K. Compact, High-resolution Inverse-Designed On-Chip Spectrometer Based on Tailored Disorder Modes. Laser Photonics Rev. 2021, 15, 2000556. [Google Scholar] [CrossRef]
- So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep Learning Enabled Inverse Design in Nanophotonics. Nanophotonics 2020, 9, 1041–1057. [Google Scholar] [CrossRef]
- Sadeghli Dizaji, P.; Habibiyan, H.; Arabalibeik, H. A Miniaturized Computational Spectrometer with Optimum Number of Nanophotonic Filters: Deep-Learning Autoencoding and Inverse Design-Based Implementation. Photonics Nanostruct.-Fundam. Appl. 2022, 52, 101057. [Google Scholar] [CrossRef]
- Pohl, D.; Reig Escalé, M.; Madi, M.; Kaufmann, F.; Brotzer, P.; Sergeyev, A.; Guldimann, B.; Giaccari, P.; Alberti, E.; Meier, U.; et al. An Integrated Broadband Spectrometer on Thin-Film Lithium Niobate. Nat. Photonics 2020, 14, 24–29. [Google Scholar] [CrossRef]
- Manzardo, O.; Herzig, H.P.; Marxer, C.R.; de Rooij, N.F. Miniaturized Time-Scanning Fourier Transform Spectrometer Based on Silicon Technology. Opt. Lett. 1999, 24, 1705–1707. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Samuelson, S.R.; Chen, J.; Xie, H. Miniaturizing Fourier Transform Spectrometer with an Electrothermal Micromirror. IEEE Photonics Technol. Lett. 2015, 27, 1418–1421. [Google Scholar] [CrossRef]
- Li, J.; Lu, D.; Qi, Z. Miniature Fourier Transform Spectrometer Based on Wavelength Dependence of Half-Wave Voltage of a LiNbO_3 Waveguide Interferometer. Opt. Lett. 2014, 39, 3923. [Google Scholar] [CrossRef]
- Herrero-Bermello, A.; Li, J.; Khazaei, M.; Grinberg, Y.; Velasco, A.V.; Vachon, M.; Cheben, P.; Stankovic, L.; Stankovic, V.; Xu, D.-X.; et al. On-Chip Fourier-Transform Spectrometers and Machine Learning: A New Route to Smart Photonic Sensors. Opt. Lett. 2019, 44, 5840–5843. [Google Scholar] [CrossRef] [PubMed]
- Le Coarer, E.; Blaize, S.; Benech, P.; Stefanon, I.; Morand, A.; Lérondel, G.; Leblond, G.; Kern, P.; Fedeli, J.M.; Royer, P. Wavelength-Scale Stationary-Wave Integrated Fourier-Transform Spectrometry. Nat. Photonics 2007, 1, 473–478. [Google Scholar] [CrossRef]
- Nie, X.; Ryckeboer, E.; Roelkens, G.; Baets, R. CMOS-Compatible Broadband Co-Propagative Stationary Fourier Transform Spectrometer Integrated on a Silicon Nitride Photonics Platform. Opt. Express 2017, 25, A409–A418. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Aoyagi, H.; Takada, K. Fabrication of Fourier-Transform, Integrated-Optic Spatial Heterodyne Spectrometer on Silica-Based Planar Waveguide. Opt. Lett. 2010, 35, 2103–2105. [Google Scholar] [CrossRef]
- Velasco, A.V.; Cheben, P.; Bock, P.J.; Delâge, A.; Schmid, J.H.; Lapointe, J.; Janz, S.; Calvo, M.L.; Xu, D.-X.; Florjańczyk, M.; et al. High-Resolution Fourier-Transform Spectrometer Chip with Microphotonic Silicon Spiral Waveguides. Opt. Lett. 2013, 38, 706–708. [Google Scholar] [CrossRef]
- Podmore, H.; Scott, A.; Cheben, P.; Velasco, A.V.; Schmid, J.H.; Vachon, M.; Lee, R. Demonstration of a Compressive-Sensing Fourier-Transform on-Chip Spectrometer. Opt. Lett. 2017, 42, 1440–1443. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Chen, T.; Liu, D.; Hong, S.; Dai, D. Ultrahigh-Resolution on-Chip Spectrometer with Silicon Photonic Resonators. Opto-Electron. Adv. 2022, 5, 210100. [Google Scholar] [CrossRef]
- Dong, B.; Cai, H.; Gu, Y.D.; Yang, Z.C.; Jin, Y.F.; Hao, Y.L.; Kwong, D.L.; Liu, A.Q. Nano-Silicon-Photonic Fourier Transform Infrared (FTIR) Spectrometer-on-a-Chip. In Proceedings of the 2015 Conference on Lasers and Electro-Optics (CLEO), Paper STu4I.1, San Jose, CA, USA, 10–15 May 2015; Optica Publishing Group: Washington, DC, USA, 2015; p. STu4I.1. [Google Scholar]
- Sun, C.; Chen, Z.; Yin, Y.; Ye, Y.; Luo, Y.; Ma, H.; Jian, J.; Shi, Y.; Zhong, C.; Zhang, D.; et al. Broadband and High-Resolution Integrated Spectrometer Based on a Tunable FSR-Free Optical Filter Array. ACS Photonics 2022, 9, 2973–2980. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, A.; Li, T.; Zou, Y. Deep-Learning-Assisted on-Chip Fourier Transform Spectrometer. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXIV, San Francisco, CA, USA, 1–6 February 2020; SPIE: Philadelphia, PA, USA, 2020; Volume 11283, p. 1128305. [Google Scholar]
- Kita, D.M.; Miranda, B.; Favela, D.; Bono, D.; Michon, J.; Lin, H.; Gu, T.; Hu, J. High-Performance and Scalable on-Chip Digital Fourier Transform Spectroscopy. Nat. Commun. 2018, 9, 4405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Ma, C.; Li, W.; Qi, Z.; Xue, N. Research Progress on On-Chip Fourier Transform Spectrometer. Laser Photonics Rev. 2021, 15, 2100016. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, K.; Xue, Y.; Liu, W.; Chen, T.; Lu, Y.; Zhao, G. Review of MEMS Based Fourier Transform Spectrometers. Micromachines 2020, 11, 214. [Google Scholar] [CrossRef]
- Gat, N. Imaging Spectroscopy Using Tunable Filters: A Review. Wavelet Appl. VII 2000, 4056, 50–64. [Google Scholar] [CrossRef]
- Sun, H.; Qiao, Q.; Xia, J.; Lee, C.; Zhou, G. Mid-Infrared Silicon Photonic Phase Shifter Based on Microelectromechanical System. Opt. Lett. 2022, 47, 5801–5803. [Google Scholar] [CrossRef]
- Zhou, G.; Lee, C. Optical MEMS, Nanophotonics, and Their Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wang, Y.; Zhou, G.; Zhang, X.; Kwon, K.; Blanche, P.-A.; Triesault, N.; Yu, K.; Wu, M.C. 2D Broadband Beamsteering with Large-Scale MEMS Optical Phased Array. Optica 2019, 6, 557. [Google Scholar] [CrossRef]
- Fathy, A.; Sabry, Y.M.; Nazeer, S.; Bourouina, T.; Khalil, D.A. On-Chip Parallel Fourier Transform Spectrometer for Broadband Selective Infrared Spectral Sensing. Microsyst. Nanoeng. 2020, 6, 10. [Google Scholar] [CrossRef]
- Qiao, Q.; Liu, X.; Ren, Z.; Dong, B.; Xia, J.; Sun, H.; Lee, C.; Zhou, G. MEMS-Enabled On-Chip Computational Mid-Infrared Spectrometer Using Silicon Photonics. ACS Photonics 2022, 9, 2367–2377. [Google Scholar] [CrossRef]
- Liao, J.-H.; Wang, W.; Chen, C.-J.; Yu, C.-J.; Wu, M.-C. Design and Fabrication of Large-Area Tunable MOEMS-Based Shortwave Infrared Fabry-Pérot Filters. J. Vac. Sci. Technol. B 2019, 37, 032002. [Google Scholar] [CrossRef]
- Wolffenbuttel, R.F. MEMS-Based Optical Mini-and Microspectrometers for the Visible and Infrared Spectral Range. J. Micromech. Microeng. 2005, 15, S145. [Google Scholar] [CrossRef]
- Schuler, L.P.; Milne, J.S.; Dell, J.M.; Faraone, L. MEMS-Based Microspectrometer Technologies for NIR and MIR Wavelengths. J. Phys. Appl. Phys. 2009, 42, 133001. [Google Scholar] [CrossRef]
- Ebermann, M.; Neumann, N.; Hiller, K.; Seifert, M.; Meinig, M.; Kurth, S. Tunable MEMS Fabry-Pérot Filters for Infrared Microspectrometers: A Review. In Proceedings of the MOEMS and Miniaturized Systems XV, San Francisco, CA, USA, 13–18 February 2016; SPIE: Philadelphia, PA, USA, 2016; Volume 9760, pp. 64–83. [Google Scholar]
- Yokino, T.; Kato, K.; Ui, A.; Nakata, S.; Suzuki, T.; Abe, R.; Suzuki, S.; Warashina, Y.; Shibayama, K.; Yamamoto, K. Grating-Based Ultra-Compact SWNIR Spectral Sensor Head Developed through MOEMS Technology. In Proceedings of the MOEMS and Miniaturized Systems XVIII, San Francisco, CA, USA, 2–7 February 2019; SPIE: Philadelphia, PA, USA, 2019; Volume 10931, pp. 55–68. [Google Scholar] [CrossRef]
- Omran, H.; Medhat, M.; Mortada, B.; Saadany, B.; Khalil, D. Fully Integrated Mach-Zhender MEMS Interferometer With Two Complementary Outputs. IEEE J. Quantum Electron. 2012, 48, 244–251. [Google Scholar] [CrossRef]
- Hongbin, Y.; Guangya, Z.; Siong, C.F.; Feiwen, L.; Shouhua, W.; Mingsheng, Z. An Electromagnetically Driven Lamellar Grating Based Fourier Transform Microspectrometer. J. Micromech. Microeng. 2008, 18, 055016. [Google Scholar] [CrossRef]
- Jain, A.; Qu, H.; Todd, S.; Xie, H. A Thermal Bimorph Micromirror with Large Bi-Directional and Vertical Actuation. Sens. Actuators Phys. 2005, 122, 9–15. [Google Scholar] [CrossRef]
- Liu, X.; Monteiro, J.; Albuquerque, I.; Lai, Y.; Jiang, C.; Zhang, S.; Falk, T.H.; Liang, J. Single-Shot Real-Time Compressed Ultrahigh-Speed Imaging Enabled by a Snapshot-to-Video Autoencoder. Photonics Res. 2021, 9, 2464. [Google Scholar] [CrossRef]
- Li, A.; Fainman, Y. Integrated Silicon Fourier Transform Spectrometer with Broad Bandwidth and Ultra-High Resolution. Laser Photonics Rev. 2021, 15, 2000358. [Google Scholar] [CrossRef]
- Zheng, S.N.; Zou, J.; Cai, H.; Song, J.F.; Chin, L.K.; Liu, P.Y.; Lin, Z.P.; Kwong, D.L.; Liu, A.Q. Microring Resonator-Assisted Fourier Transform Spectrometer with Enhanced Resolution and Large Bandwidth in Single Chip Solution. Nat. Commun. 2019, 10, 2349. [Google Scholar] [CrossRef]
- Yao, C.; Chen, M.; Yan, T.; Ming, L.; Cheng, Q.; Penty, R. Broadband Picometer-Scale Resolution on-Chip Spectrometer with Reconfigurable Photonics. Light Sci. Appl. 2023, 12, 156. [Google Scholar] [CrossRef]
- Xu, H.; Qin, Y.; Hu, G.; Tsang, H.K. Cavity-Enhanced Scalable Integrated Temporal Random-Speckle Spectrometry. Optica 2023, 10, 1177. [Google Scholar] [CrossRef]
- Gunning, W.; Yeh, P. Multiple-Cavity Infrared Electro-Optic Tunable Filter. In Proceedings of the Active Optical Devices, San Diego, CA, USA, 27–30 August 1979; SPIE: Philadelphia, PA, USA, 1980; Volume 202, pp. 21–25. [Google Scholar]
- Lammel, G.; Schweizer, S.; Renaud, P. Microspectrometer Based on a Tunable Optical Filter of Porous Silicon. Sens. Actuators Phys. 2001, 92, 52–59. [Google Scholar] [CrossRef]
- Gunning, W.; Pasko, J.; Tracy, J. A Liquid Crystal Tunable Spectral Filter: Visible and Infrared Operation. In Proceedings of the Imaging Spectroscopy I, San Francisco, CA, USA, 27–30 August 1979; SPIE: Philadelphia, PA, USA, 1981; Volume 268, pp. 190–194. [Google Scholar]
- Ni, Y.; Chen, C.; Wen, S.; Xue, X.; Sun, L.; Yang, Y. Computational Spectropolarimetry with a Tunable Liquid Crystal Metasurface. eLight 2022, 2, 23. [Google Scholar] [CrossRef]
- Yuan, S.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. A Wavelength-Scale Black Phosphorus Spectrometer. Nat. Photonics 2021, 15, 601–607. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Deng, B.; Sinai, O.; Shao, Y.; Li, C.; Yuan, S.; Tran, V.; Watanabe, K.; Taniguchi, T.; et al. Widely Tunable Black Phosphorus Mid-Infrared Photodetector. Nat. Commun. 2017, 8, 1672. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical Spectroscopy of Graphene: From the Far Infrared to the Ultraviolet. Solid State Commun. 2012, 152, 1341–1349. [Google Scholar] [CrossRef]
- Guo, L.; Sun, H.; Wang, M.; Wang, M.; Min, L.; Cao, F.; Tian, W.; Li, L. A Single-Dot Perovskite Spectrometer. Adv. Mater. 2022, 34, 2200221. [Google Scholar] [CrossRef]
- Yoon, H.H.; Fernandez, H.A.; Nigmatulin, F.; Cai, W.; Yang, Z.; Cui, H.; Ahmed, F.; Cui, X.; Uddin, M.G.; Minot, E.D.; et al. Miniaturized Spectrometers with a Tunable van Der Waals Junction. Science 2022, 378, 296–299. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, G.-H.; Van Der Zande, A.M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F.; et al. Atomically Thin p–n Junctions with van Der Waals Heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef]
- VanOrman, Z.A.; Nienhaus, L. Recent Advancements in Halide Perovskite Nanomaterials and Their Optoelectronic Applications. InfoMat 2021, 3, 962–986. [Google Scholar] [CrossRef]
- Zhang, M.-N.; Wu, X.; Riaud, A.; Wang, X.-L.; Xie, F.; Liu, W.-J.; Mei, Y.; Zhang, D.W.; Ding, S.-J. Spectrum Projection with a Bandgap-Gradient Perovskite Cell for Colour Perception. Light Sci. Appl. 2020, 9, 162. [Google Scholar] [CrossRef]
- Huang, Y.; Zha, Y.; Wang, Y.; Yang, J. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing. Sensors 2015, 15, 14397–14414. [Google Scholar] [CrossRef]
- Isam, S.; Kanaras, I.; Darwazeh, I. A Truncated SVD Approach for Fixed Complexity Spectrally Efficient FDM Receivers. In Proceedings of the 2011 IEEE Wireless Communications and Networking Conference, Cancun, Mexico, 28–31 March 2011; pp. 1584–1589. [Google Scholar]
- Vogel, C. Optimal Choice of a Truncation Level for the Truncated SVD Solution of Linear First Kind Integral Equations When Data Are Noisy. SIAM J. Numer. Anal. 1986, 23, 109–117. [Google Scholar] [CrossRef]
- Gavish, M.; Donoho, D.L. The Optimal Hard Threshold for Singular Values Is 4/\sqrt 3. IEEE Trans. Inf. Theory 2014, 60, 5040–5053. [Google Scholar] [CrossRef]
- Huang, G.; Jiang, H.; Matthews, K.; Wilford, P. Lensless Imaging by Compressive Sensing. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013; pp. 2101–2105. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.; Park, S.; Lee, H.-N. Improving Resolution of Miniature Spectrometers by Exploiting Sparse Nature of Signals. Opt. Express 2012, 20, 2613. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C. Spectrum Reconstruction for Filter-Array Spectrum Sensor from Sparse Template Selection. Opt. Eng. 2011, 50, 114402. [Google Scholar] [CrossRef]
- Li, S.; Fang, L.; Yin, H. An Efficient Dictionary Learning Algorithm and Its Application to 3-D Medical Image Denoising. IEEE Trans. Biomed. Eng. 2012, 59, 417–427. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online Dictionary Learning for Sparse Coding. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 689–696. [Google Scholar]
- Shao, L.; Yan, R.; Li, X.; Liu, Y. From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms. IEEE Trans. Cybern. 2014, 44, 1001–1013. [Google Scholar] [CrossRef]
- Vu, T.H.; Monga, V. Fast Low-Rank Shared Dictionary Learning for Image Classification. IEEE Trans. Image Process. 2017, 26, 5160–5175. [Google Scholar] [CrossRef]
- Tošić, I.; Frossard, P. Dictionary Learning. IEEE Signal Process. Mag. 2011, 28, 27–38. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Fu, H.; Huang, S.-L.; Zhang, L. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning. Sensors 2018, 18, 644. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J. Task-Driven Dictionary Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, H.; Ren, L.; Sapiro, G.; Carin, L.; Paisley, J. Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations. In Advances in Neural Information Processing Systems, Proceedings of the NIPS 2009, Vancouver, BC, Canada, 7 –10 December 2009; Curran Associates, Inc.: Nice, France, 2009; Volume 22. [Google Scholar]
- Nguyen, H.V.; Patel, V.M.; Nasrabadi, N.M.; Chellappa, R. Kernel Dictionary Learning. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2021–2024. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, J.; Li, G.; Han, H. Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2017–2026. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning Deep CNN Denoiser Prior for Image Restoration. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2808–2817. [Google Scholar]
- Ziegler, A.; Asano, Y.M. Self-Supervised Learning of Object Parts for Semantic Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 14482–14491. [Google Scholar]
- Zhou, D.; Liu, Z.; Wang, J.; Wang, L.; Hu, T.; Ding, E.; Wang, J. Human-Object Interaction Detection via Disentangled Transformer. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 19546–19555. [Google Scholar]
- Kim, C.; Park, D.; Lee, J.; Lee, H.-N. Deep Learning-Based Single-Shot Computational Spectrometer Using Multilayer Thin Films. arXiv 2022, arXiv:2204.02669. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chatzidakis, M.; Botton, G.A. Towards Calibration-Invariant Spectroscopy Using Deep Learning. Sci. Rep. 2019, 9, 2126. [Google Scholar] [CrossRef]
- Wen, J.; Hao, L.; Gao, C.; Wang, H.; Mo, K.; Yuan, W.; Chen, X.; Wang, Y.; Zhang, Y.; Shao, Y.; et al. Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer. ACS Photonics 2022, 10, 225–233. [Google Scholar] [CrossRef]
- Said, M.; Wahba, A.; Khalil, D. Semi-Supervised Deep Learning Framework for Milk Analysis Using NIR Spectrometers. Chemom. Intell. Lab. Syst. 2022, 228, 104619. [Google Scholar] [CrossRef]
- Ren, D.; Zhang, K.; Wang, Q.; Hu, Q.; Zuo, W. Neural Blind Deconvolution Using Deep Priors. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3338–3347. [Google Scholar]
- Chang, Y.; Xu, S.; Dong, B.; Wei, J.; Le, X.; Ma, Y.; Zhou, G.; Lee, C. Development of Triboelectric-Enabled Tunable Fabry-Pérot Photonic-Crystal-Slab Filter towards Wearable Mid-Infrared Computational Spectrometer. Nano Energy 2021, 89, 106446. [Google Scholar] [CrossRef]
- Ryu, E.K.; Liu, J.; Wang, S.; Chen, X.; Wang, Z.; Yin, W. Plug-and-Play Methods Provably Converge with Properly Trained Denoisers 2019. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Al-Halah, Z.; Ramakrishnan, S.K.; Grauman, K. Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17010–17020. [Google Scholar]
- Yuan, X.; Liu, Y.; Suo, J.; Dai, Q. Plug-and-Play Algorithms for Large-Scale Snapshot Compressive Imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1447–1457. [Google Scholar]
- Wang, F.; Bian, Y.; Wang, H.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase Imaging with an Untrained Neural Network. Light Sci. Appl. 2020, 9, 77. [Google Scholar] [CrossRef]
- Monakhova, K.; Tran, V.; Kuo, G.; Waller, L. Untrained Networks for Compressive Lensless Photography. Opt. Express 2021, 29, 20913. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, Y.; Meng, Z.; Qiao, M.; Tong, Z.; Yang, X.; Han, S.; Yuan, X. Deep Plug-and-Play Priors for Spectral Snapshot Compressive Imaging. Photonics Res. 2021, 9, B18. [Google Scholar] [CrossRef]
- Bryan, M.R.; Butt, J.N.; Bucukovski, J.; Miller, B.L. Biosensing with Silicon Nitride Microring Resonators Integrated with an On-Chip Filter Bank Spectrometer. ACS Sens. 2023, 8, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, J. Hybrid Plasmon Photonic Crystal Resonance Grating for Integrated Spectrometer Biosensor. Opt. Lett. 2015, 40, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Choudhary, K.; Tavazza, F.; Liao, W.; Choudhary, A.; Campbell, C.; Agrawal, A. Enhancing Materials Property Prediction by Leveraging Computational and Experimental Data Using Deep Transfer Learning. Nat. Commun. 2019, 10, 5316. [Google Scholar] [CrossRef]
- Edwards, P.; Zhang, C.; Zhang, B.; Hong, X.; Nagarajan, V.K.; Yu, B.; Liu, Z. Smartphone Based Optical Spectrometer for Diffusive Reflectance Spectroscopic Measurement of Hemoglobin. Sci. Rep. 2017, 7, 12224. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Chen, P.; Tran, N.T.; Zhang, J.; Chia, W.S.; Boujday, S.; Liedberg, B. Smartphone Spectrometer for Colorimetric Biosensing. Analyst 2016, 141, 3233–3238. [Google Scholar] [CrossRef] [PubMed]
- Sideris, C.; Hajimiri, A. Design and Implementation of an Integrated Magnetic Spectrometer for Multiplexed Biosensing. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 773–784. [Google Scholar] [CrossRef]
- Nallusamy, S.; Sujatha, K. Experimental Analysis of Nanoparticles with Cobalt Oxide Synthesized by Coprecipitation Method on Electrochemical Biosensor Using FTIR and TEM. Mater. Today Proc. 2021, 37, 728–732. [Google Scholar] [CrossRef]
- Das, A.; Swedish, T.; Wahi, A.; Moufarrej, M.; Noland, M.; Gurry, T.; Aranda-Michel, E.; Aksel, D.; Wagh, S.; Sadashivaiah, V.; et al. Mobile Phone Based Mini-Spectrometer for Rapid Screening of Skin Cancer. In Proceedings of the Next-Generation Spectroscopic Technologies VIII, Baltimore, MD, USA, 20–24 April 2015; SPIE: Philadelphia, PA, USA, 2015; Volume 9482, pp. 122–126. [Google Scholar] [CrossRef]
- Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose Sensing by Waveguide-Based Absorption Spectroscopy on a Silicon Chip. Biomed. Opt. Express 2014, 5, 1636. [Google Scholar] [CrossRef]
- Wang, L.-J.; Naudé, N.; Chang, Y.-C.; Crivaro, A.; Kamoun, M.; Wang, P.; Li, L. An Ultra-Low-Cost Smartphone Octochannel Spectrometer for Mobile Health Diagnostics. J. Biophotonics 2018, 11, e201700382. [Google Scholar] [CrossRef]
- Tricoli, A.; Nasiri, N.; De, S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Łabaj, F.; Kalwas, J.; Górski, A.; Stępień, D.; Leszcz, P.; Piramidowicz, R. Design and Development of a Miniature Mid-IR Spectrometer for Environmental Sensing and Food Safety Applications. Eng. Proc. 2022, 21, 49. [Google Scholar] [CrossRef]
- Llano Suárez, P.; Soldado, A.; González-Arrojo, A.; Vicente, F.; de la Roza-Delgado, B. Rapid On-Site Monitoring of Fatty Acid Profile in Raw Milk Using a Handheld near Infrared Sensor. J. Food Compos. Anal. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Dixit, Y.; Pham, H.Q.; Realini, C.E.; Agnew, M.P.; Craigie, C.R.; Reis, M.M. Evaluating the Performance of a Miniaturized NIR Spectrophotometer for Predicting Intramuscular Fat in Lamb: A Comparison with Benchtop and Hand-Held Vis-NIR Spectrophotometers. Meat Sci. 2020, 162, 108026. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR Device: A Non-Targeted Approach to Assess Authenticity of Fish Fillets and Patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. The Use of Imaging Spectrometry for Agricultural Applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 299–304. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Imaging Spectrometry in Agriculture—Plant Vitality and Yield Indicators. In Imaging Spectrometry—A Tool for Environmental Observations; Hill, J., Mégier, J., Eds.; Eurocourses: Remote Sensing; Springer: Dordrecht, The Netherlands, 1994; pp. 193–219. ISBN 978-0-585-33173-7. [Google Scholar]
- Wang, N.; Suomalainen, J.; Bartholomeus, H.; Kooistra, L.; Masiliūnas, D.; Clevers, J.G.P.W. Diurnal Variation of Sun-Induced Chlorophyll Fluorescence of Agricultural Crops Observed from a Point-Based Spectrometer on a UAV. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102276. [Google Scholar] [CrossRef]
- Hashim, H.; Haron, M.A.; Osman, F.N.; Al Junid, S.A.M. Classification of Rubber Tree Leaf Disease Using Spectrometer. In Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia, 26–28 May 2010; pp. 302–306. [Google Scholar] [CrossRef]
- Shen, Z.; D’Agui, H.; Walden, L.; Zhang, M.; Yiu, T.M.; Dixon, K.; Nevill, P.; Cross, A.; Matangulu, M.; Hu, Y.; et al. Miniaturised Visible and Near-Infrared Spectrometers for Assessing Soil Health Indicators in Mine Site Rehabilitation. SOIL 2022, 8, 467–486. [Google Scholar] [CrossRef]
- Kosmowski, F.; Worku, T. Evaluation of a Miniaturized NIR Spectrometer for Cultivar Identification: The Case of Barley, Chickpea and Sorghum in Ethiopia. PLoS ONE 2018, 13, e0193620. [Google Scholar] [CrossRef]
- Franceschelli, L.; Brunelli, D.; Crescentini, M.; Ragni, L.; Berardinelli, A.; Tartagni, M. Soil Moisture Assessment with a Waveguide Spectrometer. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ivanov, S.V.; Novoderezhkin, V.I.; Panchenko, V.Y.; Solomatin, V.S.; Kholodnykh, A.I. Laser Infrared Spectrometer for Atmosphere Gas Analysis and Medicine. Opt. Eng. 1994, 33, 3202–3205. [Google Scholar] [CrossRef]
- Mannila, R.; Hyypiö, R.; Korkalainen, M.; Blomberg, M.; Kattelus, H.; Rissanen, A. Gas Detection with Microelectromechanical Fabry-Perot Interferometer Technology in Cell Phone. In Proceedings of the Next-Generation Spectroscopic Technologies VIII, Baltimore, MD, USA, 20–24 April 2015; SPIE: Philadelphia, PA, USA, 2015; Volume 9482, pp. 133–141. [Google Scholar] [CrossRef]
- Erfan, M.; Sabry, Y.M.; Sakr, M.; Mortada, B.; Medhat, M.; Khalil, D. On-Chip Micro–Electro–Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing. Appl. Spectrosc. 2016, 70, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Muhiyudin, M.; Hutson, D.; Gibson, D.; Waddell, E.; Song, S.; Ahmadzadeh, S. Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing. Sensors 2020, 20, 3843. [Google Scholar] [CrossRef]
- Ayerden, N.P.; Wolffenbuttel, R.F. The Miniaturization of an Optical Absorption Spectrometer for Smart Sensing of Natural Gas. IEEE Trans. Ind. Electron. 2017, 64, 9666–9674. [Google Scholar] [CrossRef]
- Popa, D.; Udrea, F. Towards Integrated Mid-Infrared Gas Sensors. Sensors 2019, 19, 2076. [Google Scholar] [CrossRef] [PubMed]
- Scheeline, A. Cell Phone Spectrometry: Science in Your Pocket? TrAC Trends Anal. Chem. 2016, 85, 20–25. [Google Scholar] [CrossRef]
- Pügner, T.; Knobbe, J.; Grüger, H. Near-Infrared Grating Spectrometer for Mobile Phone Applications. Appl. Spectrosc. 2016, 70, 734–745. [Google Scholar] [CrossRef]
- Bae, J.; Druzhin, V.; Anikanov, A.; Afanasyev, S.; Shchekin, A.; Medvedev, A.; Morozov, A.; Kim, D.; Kim, S.; Moon, H.; et al. A Miniaturized near Infrared Spectrometer for Non-Invasive Sensing of Bio-Markers as a Wearable Healthcare Solution. In Proceedings of the MOEMS and Miniaturized Systems XVI, San Francisco, CA, USA, 28 January–2 February 2017; SPIE: Philadelphia, PA, USA, 2017; p. 101160J. [Google Scholar] [CrossRef]
- Kulakowski, J.; d’Humières, B. Chip-Size Spectrometers Drive Spectroscopy towards Consumer and Medical Applications. In Proceedings of the Photonic Instrumentation Engineering VIII, Online, 6–12 March 2021; SPIE: Philadelphia, PA, USA, 2021; Volume 11693, pp. 194–202. [Google Scholar] [CrossRef]
Encoder | Typical Resolution | Typical Footprint | Advantages | Shortcomings |
Fiber | <1 pm [27] | cm scale | Low cost, high resolution | Low-level miniaturization |
Waveguides | <10 pm [42] | 35 × 260 µm2 [42] | Low cost, structure variability | Relatively larger footprint |
Random structure | <0.75 µm [46] | 25 µm radius [46] | High resolution, smaller footprint | Large loss for scattering, structure uncertainty |
Nanowires | <10 nm [56] | 0.5 × 75 µm2 [56] | Very small size, easy to combine with CCD | Relatively lower resolution |
PhC | <0.1 nm [64] | 0.6 × 114 µm2 [64] | High resolution, cost effectiveness | Manufacture error sensitivity, larger footprint |
QD | <1 nm [75] | cm scale, compatible with CCD | Easy to combine with CCD, small footprint | Similar responses function for QDs restrict resolution |
Meta-surfaces | <0.8 nm [85] | cm scale, compatible with CCD | Large design freedom, structure variability | Relatively lower resolution |
Tunable devices | <5 pm [131] | 16 × 9 µm2 [136] | High resolution, small footprint | Environment sensitivity, more sophisticated manufacturing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Q.; Lim, Z.H.; Sun, H.; Chew, J.X.Y.; Zhou, G. Review of Miniaturized Computational Spectrometers. Sensors 2023, 23, 8768. https://doi.org/10.3390/s23218768
Guan Q, Lim ZH, Sun H, Chew JXY, Zhou G. Review of Miniaturized Computational Spectrometers. Sensors. 2023; 23(21):8768. https://doi.org/10.3390/s23218768
Chicago/Turabian StyleGuan, Qingze, Zi Heng Lim, Haoyang Sun, Jeremy Xuan Yu Chew, and Guangya Zhou. 2023. "Review of Miniaturized Computational Spectrometers" Sensors 23, no. 21: 8768. https://doi.org/10.3390/s23218768
APA StyleGuan, Q., Lim, Z. H., Sun, H., Chew, J. X. Y., & Zhou, G. (2023). Review of Miniaturized Computational Spectrometers. Sensors, 23(21), 8768. https://doi.org/10.3390/s23218768