Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications
Abstract
:1. Introduction
2. Related Work
3. Experimental Datasets
3.1. Appendicitis
3.2. Breast Cancer
3.3. Haberman
3.4. Heart
3.5. Hepatitis
3.6. Mammographic
3.7. Saheart
3.8. Spectfheart
3.9. Wisconsin Diagnosis Breast Cancer (WDBC)
3.10. Wisconsin Breast Cancer Original (Wisconsin)
3.11. Complications
3.12. Diabetes
4. Fuzzy Rule-Based Classification Algorithms
4.1. One Rule (1R-C)
4.2. C4.5 (C4.5-C)
4.3. C4.5Rules (C45Rules-C)
4.4. C4.5Rules Simulated Annealing Version (C45RulesSA-C)
4.5. Hybrid Decision Tree-Genetic Algorithm (DT_GA-C)
4.6. Oblique Decision Tree with Evolutionary Learning (DT_Oblique-C)
4.7. Exemplar-Aided Constructor of Hyperrectangles (EACH-C)
4.8. Classifier Based on Fuzzy Logic and Gene Expression Programming (GPR)
4.9. Hierarchical Decision Rules (Hider-C)
4.10. New Structural Learning Algorithm in a Vague Environment (NSLV-C)
4.11. Organizational Co-Evolutionary Algorithm for Classification (OCEC-C)
4.12. Ordered Incremental Genetic Algorithm (OIGA-C)
4.13. Pittsburgh Genetic Interval Rule Learning Algorithm (PGIRLA-C)
4.14. Repeated Incremental Pruning to Produce Error Reduction (Ripper-C)
4.15. Structural Learning Algorithm in a Vague Environment v0 (SLAVEv0-C)
4.16. Structural Learning Algorithm in a Vague Environment 2 (SLAVE2-C)
5. Performance Metrics
6. Experimental Results
7. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | accuracy |
ANA | average number of attributes per rule in dataset |
ANC | average number of characters per rule in dataset |
ANR | average number of rules on dataset |
ANUA | average number of unique attributes per rule in dataset |
AUC | area under ROC curve |
C45RulesSA-C | C4.5Rules simulated annealing version |
DT_GA-C | hybrid decision tree-genetic algorithm |
DT_Oblique-C | oblique decision tree with evolutionary learning |
EACH-C | exemplar-aided constructor of hyperrectangles |
FN | false negatives |
FP | false positives |
FPR | false positive rate |
FRBS | fuzzy rule-based systems |
GPR | classifier based on fuzzy logic and gene expression programming |
Hider-C | hierarchical decision rules |
KNN | k-nearest neighbors |
MCC | Matthews correlation coefficient |
MDSS | medical decision support systems |
NSLV-C | New SLAVE |
OCEC-C | organizational co-evolutionary algorithm for classification |
OIGA-C | ordered incremental genetic algorithm |
PGIRLA-C | Pittsburgh genetic interval rule learning algorithm |
Pre | precision |
RBS | rule-based systems |
Ripper-C | repeated incremental pruning to produce error reduction |
Sen | sensitivity |
SLAVEv0-C | structural learning algorithm in a vague environment |
SVM | support vector machine |
TN | true negatives |
TP | true positives |
WDBC | Wisconsin diagnosis breast cancer |
WM | weighted metric |
Wisconsin | Wisconsin breast cancer (original) |
References
- Yan, H.; Jiang, Y.; Zheng, J.; Peng, C.; Li, Q. A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 2006, 30, 272–281. [Google Scholar] [CrossRef]
- Malmir, B.; Amini, M.; Chang, S.I. A medical decision support system for disease diagnosis under uncertainty. Expert Syst. Appl. 2017, 88, 95–108. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Castiello, C.; Pasquadibisceglie, V.; Zaza, G. A Fuzzy Rule-Based Decision Support System for Cardiovascular Risk Assessment. In Fuzzy Logic and Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 97–108. [Google Scholar] [CrossRef]
- Durán, J.M.; Jongsma, K.R. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J. Med. Ethics 2021, 47, 329–335. [Google Scholar] [CrossRef]
- Czmil, S.; Kluska, J.; Czmil, A. CACP: Classification Algorithms Comparison Pipeline. SoftwareX 2022, 19, 101134. [Google Scholar] [CrossRef]
- Grosan, C.; Abraham, A. Intelligent Systems; Intelligent Systems Reference Library, Springer: New York, NY, USA, 2011; p. 148. [Google Scholar]
- Loyola-González, O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View. IEEE Access 2019, 7, 154096–154113. [Google Scholar] [CrossRef]
- Kluska, J.; Madera, M. Extremely simple classifier based on fuzzy logic and gene expression programming. Inf. Sci. 2021, 571, 560–579. [Google Scholar] [CrossRef]
- Kliegr, T.; Bahník, Š.; Fürnkranz, J. A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif. Intell. 2021, 295, 103458. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kluska, J. Selected Applications of P1-TS Fuzzy Rule-Based Systems. In Lecture Notes in Computer Science, Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 14–18 June 2015; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 195–206. [Google Scholar]
- Dec, G.; Drałus, G.; Mazur, D.; Kwiatkowski, B. Forecasting Models of Daily Energy Generation by PV Panels Using Fuzzy Logic. Energies 2021, 14, 1676. [Google Scholar] [CrossRef]
- Kluska, J.; Kusy, M.; Obrzut, B. The Classifier for Prediction of Peri-operative Complications in Cervical Cancer Treatment. In Lecture Notes in Computer Science, Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 14–18 June 2015; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 143–154. [Google Scholar]
- Al-shami, T.M. (2, 1)-Fuzzy sets: Properties, weighted aggregated operators and their applications to multi-criteria decision-making methods. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Holte, R. Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 1993, 11, 63–91. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Series in Data Management Systems; Morgan Kaufmann: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Salzberg, S. A Nearest Hyperrectangle Learning Method. Mach. Learn. 1991, 6, 251–276. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W. Fast Effective Rule Induction. In Lecture Notes on Multidisciplinary Industrial Engineering, Proceedings of the Twelfth International Conference on Management Science and Engineering Management, Tahoe City, CA, USA, 9–12 July 1995; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–10. [Google Scholar]
- Ouyang, C.S.; Lee, C.T.; Lee, S.J. An Improved Fuzzy Genetics-Based Machine Learning Algorithm for Pattern Classification. In Proceedings of the Second International Conference on Innovative Computing, Information and Control (ICICIC 2007), Kumamoto, Japan, 5–7 September 2007. [Google Scholar] [CrossRef]
- Carvalho, D.; Freitas, A. A hybrid decision tree/genetic algorithm method for data mining. Inf. Sci. 2004, 163, 13–35. [Google Scholar] [CrossRef]
- Cantú-Paz, E.; Kamath, C. Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 54–68. [Google Scholar] [CrossRef]
- Gonzalez, A.; Perez, R. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets Syst. 1998, 96, 37–51. [Google Scholar] [CrossRef]
- Aguilar-Ruiz, J.; Riquelme, J.; Toro, M. Evolutionary learning of hierarchical decision rules. Trans. Syst. Man Cybern.—Part B Cybern. 2003, 33, 324–331. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, J.; Zhong, W. An organizational coevolutionary algorithm for classification. IEEE Trans. Evol. Comput. 2006, 10, 67–80. [Google Scholar] [CrossRef]
- Zhu, F.; Guan, S. Ordered incremental training with genetic algorithms. Int. J. Intell. Syst. 2004, 19, 1239–1256. [Google Scholar] [CrossRef]
- Corcoran, A.; Sen, S. Using Real-Valued Genetic Algorithms to Evolve Rule Sets for Classification. In Proceedings of the 1st IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994; pp. 120–124. [Google Scholar]
- Aamir, K.M.; Sarfraz, L.; Ramzan, M.; Bilal, M.; Shafi, J.; Attique, M. A Fuzzy Rule-Based System for Classification of Diabetes. Sensors 2021, 21, 8095. [Google Scholar] [CrossRef]
- Adeli, A.; Neshat, M. A fuzzy expert system for heart disease diagnosis. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I, Hong Kong, 17–19 March 2010; pp. 134–139. Available online: https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp134-139.pdf. (accessed on 12 January 2023).
- Improta, G.; Mazzella, V.; Vecchione, D.; Santini, S.; Triassi, M. Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-Transplant Patients. J. Eval. Clin. Pract. 2019, 26, 1224–1234. [Google Scholar] [CrossRef] [Green Version]
- Rotshtein, A. Design and Tuning of Fuzzy Rule-Based Systems for Medical Diagnosis. In Fuzzy and Neuro-Fuzzy Systems in {Medicine; CRC Press: Boca Raton, FL, USA, 2017; pp. 243–290. [Google Scholar] [CrossRef]
- Mohammadpour, R.A.; Abedi, S.M.; Bagheri, S.; Ghaemian, A. Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease. Comput. Math. Methods Med. 2015, 2015, 564867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dmour, J.A.; Sagahyroon, A.; Al-Ali, A.; Abusnana, S. A fuzzy logic–based warning system for patients classification. Health Inform. J. 2017, 25, 1004–1024. [Google Scholar] [CrossRef] [PubMed]
- Adlassnig, K.P. Fuzzy Set Theory in Medical Diagnosis. IEEE Trans. Syst. Man Cybern. 1986, 16, 260–265. [Google Scholar] [CrossRef]
- Wieben, O.; Afonso, V.X.; Tompkins, W.J. Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system. Med. Biol. Eng. Comput. 1999, 37, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Tsipouras, M.; Exarchos, T.; Fotiadis, D.; Kotsia, A.; Vakalis, K.; Naka, K.; Michalis, L. Automated Diagnosis of Coronary Artery Disease Based on Data Mining and Fuzzy Modeling. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 447–458. [Google Scholar] [CrossRef]
- Sanz, J.; Pagola, M.; Bustince, H.; Brugos, A.; Fernández, A.; Herrera, F. A case study on medical diagnosis of cardiovascular diseases using a Genetic Algorithm for Tuning Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets. In Proceedings of the 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), Paris, France, 11–15 April 2011; pp. 9–15. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, R.; Ellis, T.; Mazinani, M.; Dehmeshki, J. A genetic fuzzy approach for rule extraction for rule-based classification with application to medical diagnosis. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens, Greece, 5–9 September 2011; pp. 5–9. [Google Scholar]
- Mala, I.; Akhtar, P.; Ali, T.J.; Zia, S.S. Fuzzy rule based classification for heart dataset using fuzzy decision tree algorithm based on fuzzy RDBMS. World Appl. Sci. J. 2013, 28, 1331–1335. [Google Scholar]
- Sanz, J.A.; Galar, M.; Jurio, A.; Brugos, A.; Pagola, M.; Bustince, H. Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 2014, 20, 103–111. [Google Scholar] [CrossRef]
- Jaćimović, J.; Krstev, C.; Jelovac, D. A rule-based system for automatic de-identification of medical narrative texts. Informatica 2015, 39, 45–53. [Google Scholar]
- Sadeghzadeh, M. A New Method for Diagnosing Breast Cancer using Firefly Algorithm and Fuzzy Rule based Classification. In Proceedings of the 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 20–22 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Davoodi, R.; Moradi, M.H. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. J. Biomed. Inform. 2018, 79, 48–59. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, C.; Ni, T. Feature Selection and Rule Generation Integrated Learning for Takagi-Sugeno-Kang Fuzzy System and its Application in Medical Data Classification. IEEE Access 2019, 7, 169029–169037. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Geetha, P.; Ramaraj, E. Rule Based System for Better Prediction of Diabetes. In Proceedings of the 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), Chennai, India, 21–22 February 2019; pp. 195–203. [Google Scholar] [CrossRef]
- Singh, N.; Singh, P. Medical Diagnosis of Coronary Artery Disease Using Fuzzy Rule-Based Classification Approach. In Advances in Biomedical Engineering and Technology; Springer: Singapore, 2020; pp. 321–330. [Google Scholar] [CrossRef]
- Hossain, S.; Sarma, D.; Chakma, R.J.; Alam, W.; Hoque, M.M.; Sarker, I.H. A rule-based expert system to assess coronary artery disease under uncertainty. In Communications in Computer and Information Science; Springer: Singapore, 2020; pp. 143–159. [Google Scholar]
- Steimann, F. On the use and usefulness of fuzzy sets in medical AI. Artif. Intell. Med. 2001, 21, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, S.M.; Abdullah, S.; Niaki, S.T.A.; Banihashemi, S. An intelligent hybrid classification algorithm integrating fuzzy rule-based extraction and harmony search optimization: Medical diagnosis applications. Knowl.-Based Syst. 2021, 220, 106943. [Google Scholar] [CrossRef]
- Varshney, A.K.; Torra, V. Literature Review of various Fuzzy Rule based Systems. arXiv 2022, arXiv:2209.07175. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Neelu, K. Review of Fuzzy Rule Based Classification systems. Res. J. Pharm. Technol. 2016, 9, 1299. [Google Scholar]
- Gilda, K.S.; Satarkar, S.L. Review of Fuzzy Systems through various jargons of technology. J. Emerg. Technol. Innov. Res. 2020, 7, 260–264. [Google Scholar]
- Kar, S.; Das, S.; Ghosh, P.K. Applications of neuro fuzzy systems: A brief review and future outline. Appl. Soft Comput. 2014, 15, 243–259. [Google Scholar] [CrossRef]
- Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S. KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. J. Multiple Valued Log. Soft Comput. 2011, 17, 255–287. [Google Scholar]
- Weiss, S.M.; Kulikowski, C.A. Computer Systems That Learn: Classification and Prediction Methods From Statistics, Neural Nets, Machine Learning, and Expert Systems; Morgan Kaufmann: San Mateo, CA, USA, 1991. [Google Scholar]
- Czmil, A.; Czmil, S.; Mazur, D. A Method to Detect Type 1 Diabetes Based on Physical Activity Measurements Using a Mobile Device. Appl. Sci. 2019, 9, 2555. [Google Scholar] [CrossRef]
- Czmil, A. GPR: A Python Implementation of an Extremely Simple Classifier Based on Fuzzy Logic and Gene Expression Programming (Version 1.0.0) [Computer Software], 2022. Available online: https://github.com/czmilanna/gpr-algorithm (accessed on 12 January 2023).
- Quinlan, J. C4.5: Programs for Machine Learning; Morgan Kauffman: San Mateo, CA, USA, 1993. [Google Scholar]
- Quinlan, J. MDL and Categorical Theories (Continued). In Proceedings of the Twelfth International Conference on Management Science and Engineering Management, Tahoe City, CA, USA, 9–12 July 1995; pp. 464–470. [Google Scholar]
- González, A.; Perez, R. Improving the genetic algorithm of SLAVE. Mathw. Soft Comput. 2009, 16, 59–70. [Google Scholar]
- Gonzalez, A.; Perez, R. SLAVE: A genetic learning system based on an iterative approach. IEEE Trans. Fuzzy Syst. 1999, 7, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Chong, D.; Batarseh, F.A. 5—Foundations of data imbalance and solutions for a data democracy. In Data Democracy; Batarseh, F.A., Yang, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 83–106. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Halford, G.S.; Baker, R.; McCredden, J.E.; Bain, J.D. How Many Variables Can Humans Process? Psychol. Sci. 2005, 16, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
Dataset | Records | Attributes | Classes | Class Imbalance | Source | |
---|---|---|---|---|---|---|
1 | Appendicitis | 106 | 7 | 2 | 0.2471 | KEEL |
2 | Breast cancer | 277 | 9 | 2 | 0.4133 | KEEL |
3 | Haberman | 306 | 3 | 2 | 0.3600 | KEEL |
4 | Heart | 270 | 13 | 2 | 0.8000 | KEEL |
5 | Hepatitis | 80 | 19 | 2 | 0.1940 | KEEL |
6 | Mammographic | 830 | 5 | 2 | 0.9438 | KEEL |
7 | Saheart | 462 | 9 | 2 | 0.5298 | KEEL |
8 | Spectfheart | 267 | 44 | 2 | 0.2594 | KEEL |
9 | WDBC | 569 | 30 | 2 | 0.5938 | KEEL |
10 | Wisconsin | 683 | 9 | 2 | 0.5383 | KEEL |
11 | Complications | 107 | 8 | 2 | 0.8136 | Real |
12 | Diabetes | 230 | 9 | 2 | 1.0000 | Real |
No. | Algorithm | MCC | ACC | AUC | Spe | Pre | Sen | WM |
---|---|---|---|---|---|---|---|---|
1 | GPR | 0.459 ± 0.342 | 0.807 ± 0.281 | 0.720 ± 0.171 | 0.792 ± 0.125 | 0.772 ± 0.167 | 0.792 ± 0.125 | 0.753 ± 0.145 |
2 | OIGA-C | 0.457 ± 0.337 | 0.860 ± 0.253 | 0.714 ± 0.172 | 0.793 ± 0.114 | 0.782 ± 0.152 | 0.793 ± 0.114 | 0.755 ± 0.138 |
3 | Ripper-C | 0.452 ± 0.319 | 0.676 ± 0.243 | 0.730 ± 0.162 | 0.735 ± 0.158 | 0.780 ± 0.139 | 0.735 ± 0.158 | 0.718 ± 0.164 |
4 | C45RulesSA-C | 0.449 ± 0.343 | 0.752 ± 0.255 | 0.727 ± 0.172 | 0.769 ± 0.140 | 0.776 ± 0.147 | 0.769 ± 0.140 | 0.740 ± 0.157 |
5 | OCEC-C | 0.447 ± 0.323 | 0.753 ± 0.221 | 0.726 ± 0.164 | 0.753 ± 0.145 | 0.771 ± 0.145 | 0.753 ± 0.145 | 0.730 ± 0.156 |
6 | NSLV-C | 0.446 ± 0.338 | 0.791 ± 0.298 | 0.716 ± 0.171 | 0.795 ± 0.122 | 0.771 ± 0.148 | 0.795 ± 0.122 | 0.752 ± 0.141 |
7 | C45Rules-C | 0.446 ± 0.340 | 0.738 ± 0.273 | 0.724 ± 0.173 | 0.768 ± 0.142 | 0.777 ± 0.141 | 0.768 ± 0.142 | 0.737 ± 0.159 |
8 | DT GA-C | 0.442 ± 0.329 | 0.799 ± 0.267 | 0.712 ± 0.163 | 0.784 ± 0.116 | 0.775 ± 0.138 | 0.784 ± 0.116 | 0.746 ± 0.135 |
9 | SLAVE2-C | 0.438 ± 0.338 | 0.792 ± 0.296 | 0.712 ± 0.170 | 0.786 ± 0.123 | 0.769 ± 0.148 | 0.786 ± 0.123 | 0.746 ± 0.144 |
10 | C45-C | 0.438 ± 0.343 | 0.785 ± 0.264 | 0.710 ± 0.171 | 0.782 ± 0.128 | 0.772 ± 0.146 | 0.782 ± 0.128 | 0.743 ± 0.147 |
11 | Hider-C | 0.414 ± 0.336 | 0.797 ± 0.274 | 0.693 ± 0.167 | 0.767 ± 0.138 | 0.763 ± 0.144 | 0.767 ± 0.138 | 0.728 ± 0.150 |
12 | DT Oblique-C | 0.402 ± 0.346 | 0.741 ± 0.222 | 0.703 ± 0.173 | 0.745 ± 0.146 | 0.754 ± 0.149 | 0.745 ± 0.146 | 0.715 ± 0.160 |
13 | SLAVEv0-C | 0.394 ± 0.374 | 0.761 ± 0.315 | 0.691 ± 0.182 | 0.772 ± 0.137 | 0.749 ± 0.161 | 0.772 ± 0.137 | 0.727 ± 0.158 |
14 | PGIRLA-C | 0.327 ± 0.337 | 0.819 ± 0.269 | 0.655 ± 0.165 | 0.716 ± 0.193 | 0.668 ± 0.239 | 0.716 ± 0.193 | 0.681 ± 0.172 |
15 | EACH-C | 0.264 ± 0.340 | 0.621 ± 0.417 | 0.626 ± 0.165 | 0.662 ± 0.185 | 0.675 ± 0.238 | 0.662 ± 0.185 | 0.630 ± 0.180 |
16 | 1R-C | 0.228 ± 0.331 | 0.652 ± 0.378 | 0.610 ± 0.160 | 0.703 ± 0.162 | 0.636 ± 0.211 | 0.703 ± 0.162 | 0.645 ± 0.160 |
Algorithm | ANC | ANR | ANA | ANUA | |
---|---|---|---|---|---|
1 | 1R-C | 106.54 | 3.31 | 3.31 | 1.00 |
2 | GPR | 156.23 | 4.00 | 6.69 | 5.31 |
3 | C45Rules-C | 392.08 | 8.38 | 18.85 | 6.46 |
4 | C45RulesSA-C | 557.62 | 9.77 | 28.08 | 6.15 |
5 | EACH-C | 695.384 | 2.00 | 23.46 | 11.85 |
6 | NSLV-C | 824.08 | 8.92 | 28.46 | 8.23 |
7 | Ripper-C | 981.31 | 16.15 | 51.31 | 8.85 |
8 | C45-C | 1425.31 | 11.46 | 57.23 | 6.62 |
9 | DT GA-C | 2703.38 | 18.08 | 123.00 | 10.38 |
10 | SLAVE2-C | 4593.85 | 12.38 | 154.62 | 13.31 |
11 | SLAVEv0-C | 5101.92 | 14.69 | 168.08 | 13.38 |
12 | PGIRLA-C | 6330.54 | 18.69 | 115.31 | 12.31 |
13 | Hider-C | 11,468.85 | 18.08 | 425.15 | 11.08 |
14 | OCEC-C | 12,188.08 | 83.23 | 772.46 | 13.31 |
15 | OIGA-C | 20,958.08 | 30.00 | 399.23 | 15.85 |
16 | DT Oblique-C | 32,457.38 | 61.15 | 1059.08 | 11.69 |
Algorithm | Rules Generated for the Diabetes Dataset | Number of Rules | Rules Length |
---|---|---|---|
1R-C | IF step count = [13072.0, 55333.0) THEN 0 IF step count = [55333.0, 58288.0) THEN 1 IF step count = [58288.0, 60294.0) THEN 0 IF step count = [60294.0, 114655.0] THEN 1 | 4 | 172 |
C45-C | IF step count <= 60837.000000 AND vigorious <= 128.750000 AND weight <= 80.500000 THEN 0 IF step count <= 60837.000000 AND vigorious <= 128.750000 AND weight > 80.500000 THEN … | 12 | 1828 |
C45Rules-C | IF height>1.61 AND age>14.0 AND weight<=52.0 THEN 1 IF vigorious>128.75 AND vigorious<=319.5 AND age>8.0 AND moderate>214.916666666667 THEN 1 IF step count>60837.0 THEN 1 … | 8 | 400 |
C45RulesSA-C | IF height>1.61 AND age>14.0 AND weight<=52.0 THEN 1 IF vigorious>128.75 AND vigorious<=319.5 AND age>8.0 AND moderate>214.916666666667 THEN 1 IF step count>60837.0 THEN 1 … | 8 | 400 |
DT GA-C | IF step count <= 60837.0 AND vigorious <= 128.75 AND weight <= 80.5 THEN 0 IF step count <= 60837.0 AND vigorious <= 128.75 AND weight > 80.5 THEN 1 IF step count <= 60837.0 … | 19 | 2856 |
DT Oblique-C | IF -1.0*step count + 60837.0 >= 0 AND -1.0*vigorious + 128.75 >= 0 AND -1.0*weight + 80.5 >= 0 AND -1.0*height + 1.87 >= 0 AND 168.486174002403*sex + -178.36864022034422*age + - … | 30 | 8625 |
EACH-C | IF age in [6.0, 18.0] AND weight in [19.3, 98.8] AND height in [1.15, 1.88] AND step count in [13072.0, 60837.0] AND sedentary in [1343.16666666667, 7813.33333333333] AND l … | 2 | 603 |
GPR | IF step count is High THEN 1 IF vigorious is High AND sedentary is High THEN 1 ELSE 0 | 3 | 87 |
Hider-C | IF age = [7.5, 17.5) AND weight = [29.15, 65.7) AND step count = [ , 55096.5) AND sedentary = [2270.083333333335, 4964.916666666664) AND light = [356.875, 1330.833333333335) AND … | 14 | 3595 |
NSLV-C | IF step count = { VeryLow Low} THEN 0 IF step count = { High VeryHigh} THEN 1 IF age = { Low High VeryHigh} AND moderate = { Low VeryHigh} THEN 1 | 3 | 145 |
OCEC-C | IF step count = 3 THEN 1 IF age = 2 AND sedentary = 1 THEN 1 IF sex = 0 AND vigorious = 1 THEN 1 IF sex = 0 AND step count = 1 AND light = 1 THEN 0 IF height = 2 AND ste … | 62 | 6763 |
OIGA-C | IF 1.6699878586619132 < sex < 1.1982191470913168 AND 9.4429624945491 < age < 16.56761035848586 AND 67.72250192298611 < weight < 85.23233850170679 AND 1.859257826523217 < height … | 30 | 14312 |
PGIRLA-C | IF sedentary = [3801.8675692824663, 5006.615988626676] AND light = [1162.1170959360238, 2362.4439084883884] AND moderate = [414.0390532025578, 474.55751714327096] AND vigorious … | 19 | 4340 |
Ripper-C | IF step count<=60837.0 AND height<=1.58 THEN 0 IF step count<=60837.0 AND moderate<=119.0 THEN 0 IF step count<=60837.0 AND vigorious<=127.5 AND height>1.64 AND moderate>123 … | 9 | 467 |
SLAVE2-C | IF age = { VeryLow Medium} AND weight = { Medium} AND height = { High VeryHigh} AND step count = { VeryLow Low} AND sedentary = { Medium} AND light = { Low} AND moderate = { Low … | 8 | 2098 |
SLAVEv0-C | IF step count = { VeryLow Low} THEN 0 IF age = { VeryLow Low Medium VeryHigh} AND height = { VeryLow Low Medium VeryHigh} AND step count = { Medium} AND sedentary = { Medium} … | 11 | 2814 |
No. | Algorithm | MCC p-Value | AUC p-Value | ACC p-Value |
---|---|---|---|---|
1 | 1R-C | 0.0000 | 0.0000 | 0.0000 |
2 | C45-C | 0.8475 | 0.6052 | 0.2622 |
3 | C45Rules-C | 0.8690 | 0.0899 | 0.0027 |
4 | C45RulesSA-C | 0.6243 | 0.0583 | 0.0123 |
5 | DT GA-C | 0.9265 | 0.6479 | 0.3322 |
6 | DT Oblique-C | 0.0026 | 0.0592 | 0.0000 |
7 | EACH-C | 0.0000 | 0.0000 | 0.0000 |
8 | Hider-C | 0.0056 | 0.0016 | 0.0022 |
9 | NSLV-C | 0.5980 | 0.8152 | 0.7802 |
10 | OCEC-C | 0.0725 | 0.8430 | 0.0000 |
11 | OIGA-C | 0.6399 | 0.3130 | 0.8192 |
12 | PGIRLA-C | 0.0003 | 0.0004 | 0.0001 |
13 | Ripper-C | 0.5355 | 0.4273 | 0.0000 |
14 | SLAVE2-C | 0.2653 | 0.2346 | 0.4621 |
15 | SLAVEv0-C | 0.0012 | 0.0014 | 0.0023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czmil, A. Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications. Sensors 2023, 23, 992. https://doi.org/10.3390/s23020992
Czmil A. Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications. Sensors. 2023; 23(2):992. https://doi.org/10.3390/s23020992
Chicago/Turabian StyleCzmil, Anna. 2023. "Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications" Sensors 23, no. 2: 992. https://doi.org/10.3390/s23020992
APA StyleCzmil, A. (2023). Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications. Sensors, 23(2), 992. https://doi.org/10.3390/s23020992