Heart Rate Variability’s Association with Positive and Negative Affect in Daily Life: An Experience Sampling Study with Continuous Daytime Electrocardiography over Seven Days
Abstract
:1. Introduction
1.1. HRV Measures, and Their Relationship with the PNS and SNS
1.2. Research Paradigms Used in Previous Research on the Relationship between Emotional States and the ANS
1.3. Studying the Association between Affective States and the ANS in Intensive Longitudinal Data
1.4. Aims of the Present Study
- How do the HR and HRV measures differ between different body positions (i.e., posture) or current activity class (i.e., inactive vs. active) in ambulatory assessments?
- Is the intensity of physical activity (measured as the metabolic equivalent of task; MET) associated with HR and HRV during ambulatory assessments?
- Are the HR and HRV measures associated with positive and negative affect on a within-individual level?
- Do the associations of research question 3 change in terms of significance and effect size if different time intervals for HRV sampling are considered (e.g., how do the associations change if HRV is measured over 5, 10, or 30 min)?
- Do the associations of research question 3 change in terms of significance and effect size if body position and activity status are controlled statistically compared with when they are held constant by stratification (e.g., by particularly focusing on resting states in the upright body position)?
- Do the associations of research question 3 change in terms of significance and effect size if single affect items (e.g., being happy, being sad, or being enthusiastic) are used instead of affect sum scores (i.e., positive and negative affect).
- Are the HR and HRV measures associated with positive and negative affect on a between-individual level?
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures and Instruments
2.3.1. Physical Activity Measures
2.3.2. Cardiac Measures
2.3.3. Affective States
2.4. Data Analyses
3. Results
3.1. Descriptive Statistics
3.2. Differences in HR and HRV Measures between Body Positions and Activity Classes
3.3. Within-Individual Associations of Physical Activity with HR and HRV
3.4. Within-Individual Associations of HR and HRV with Affective Wellbeing
3.5. Between-Individual Associations of HR and HRV with Affective Wellbeing
4. Discussion
4.1. Strengths and Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreibig, S.D. Autonomic Nervous System Activity in Emotion: A Review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, Autonomic Nervous System; Stat Pearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, H.J.; Cho, C.-H.; Cho, J.; Woo, J.-M. Reliability of Ultra-Short-Term Analysis as a Surrogate of Standard 5-Min Analysis of Heart Rate Variability. Telemed. E-Health 2015, 21, 404–414. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Laborde, S.; Mosley, E.; Mertgen, A. Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning—Resting, Reactivity, and Recovery. Front. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Yang, L.; Zhao, L.; Su, Z.; Mao, X.; Zhang, L.; Liu, C. Differences of Heart Rate Variability Between Happiness and Sadness Emotion States: A Pilot Study. J. Med. Biol. Eng. 2017, 37, 527–539. [Google Scholar] [CrossRef]
- Geisler, F.C.M.; Vennewald, N.; Kubiak, T.; Weber, H. The Impact of Heart Rate Variability on Subjective Well-Being Is Mediated by Emotion Regulation. Pers. Indiv. Differ. 2010, 49, 723–728. [Google Scholar] [CrossRef]
- Bolger, N.; Laurenceau, J.-P. Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research; Methodology in the social sciences; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Hamaker, E.L.; Wichers, M. No Time Like the Present: Discovering the Hidden Dynamics in Intensive Longitudinal Data. Curr. Dir. Psychol. Sci. 2017, 26, 10–15. [Google Scholar] [CrossRef]
- Fisher, A.J.; Medaglia, J.D.; Jeronimus, B.F. Lack of Group-to-Individual Generalizability Is a Threat to Human Subjects Research. Proc. Natl. Acad. Sci. USA 2018, 115, E6106–E6115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwerdtfeger, A.R.; Gerteis, A.K.S. The Manifold Effects of Positive Affect on Heart Rate Variability in Everyday Life: Distinguishing within-Person and between-Person Associations. Health Psychol. 2014, 33, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Murata, T.; Foo, J.C.; Md Azmol Hossain, B.; Togo, F. A Pilot Study of Temporal Associations Between Psychological Stress and Cardiovascular Response. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 7040–7043. [Google Scholar] [CrossRef]
- van Halem, S.; van Roekel, E.; Kroencke, L.; Kuper, N.; Denissen, J. Moments That Matter? On the Complexity of Using Triggers Based on Skin Conductance to Sample Arousing Events within an Experience Sampling Framework. Eur. J. Pers. 2020, 34, 794–807. [Google Scholar] [CrossRef]
- Cohen, S.; Alper, C.M.; Doyle, W.J.; Treanor, J.J.; Turner, R.B. Positive Emotional Style Predicts Resistance to Illness After Experimental Exposure to Rhinovirus or Influenza A Virus. Psychosom. Med. 2006, 68, 809–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience, 1st ed.; Harper & Row: New York, NY, USA, 1990. [Google Scholar]
- Fredrickson, B.L. The Role of Positive Emotions in Positive Psychology. The Broaden-and-Build Theory of Positive Emotions. Am. Psychol. 2001, 56, 218–226. [Google Scholar] [CrossRef]
- Body Position. Available online: https://docs.movisens.com/Algorithms/physical_activity/#body-position-bodyposition (accessed on 11 November 2022).
- Activity Class. Available online: https://docs.movisens.com/Algorithms/physical_activity/#activity-class-activityclass (accessed on 11 November 2022).
- Anastasopoulou, P.; Tansella, M.; Stumpp, J.; Shammas, L.; Hey, S. Classification of Human Physical Activity and Energy Expenditure Estimation by Accelerometry and Barometry. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 6451–6454. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sport. Exer. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Energy expenditure. Available online: https://docs.movisens.com/Algorithms/energy_expenditure/#energy-expenditure (accessed on 11 November 2022).
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- ECG, Heart Rate and Heart Rate Variability. Available online: https://docs.movisens.com/Algorithms/ecg_hr_hrv/#ecg-heart-rate-and-heart-rate-variability (accessed on 11 November 2022).
- Das-Friebel, A.; Lenneis, A.; Realo, A.; Sanborn, A.; Tang, N.K.Y.; Wolke, D.; Mühlenen, A.; Lemola, S. Bedtime Social Media Use, Sleep, and Affective Wellbeing in Young Adults: An Experience Sampling Study. J. Child Psychol. Psychiatr. 2020, 61, 1138–1149. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Russell, J.A. A Circumplex Model of Affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Roy. Stat. Soc. B Met. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hottenrott, L.; Ketelhut, S.; Hottenrott, K. Commentary: Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning—Resting, Reactivity, and Recovery. Front. Neurosci. 2019, 13, 1300. [Google Scholar] [CrossRef] [Green Version]
- Kanning, M. Using Objective, Real-Time Measures to Investigate the Effect of Actual Physical Activity on Affective States in Everyday Life Differentiating the Contexts of Working and Leisure Time in a Sample with Students. Front. Psychol. 2013, 3, 602. [Google Scholar] [CrossRef] [Green Version]
- Kanning, M.; Ebner-Priemer, U.; Brand, R. Autonomous Regulation Mode Moderates the Effect of Actual Physical Activity on Affective States: An Ambulant Assessment Approach to the Role of Self-Determination. J. Sport Exerc. Psy. 2012, 34, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-M.; Hachenberger, J.; Lemola, S. The Role of the Context of Physical Activity for Its Association with Affective Well-Being: An Experience Sampling Study in Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 10468. [Google Scholar] [CrossRef]
- Li, Y.-M.; Konstabel, K.; Mõttus, R.; Lemola, S. Temporal Associations between Objectively Measured Physical Activity and Depressive Symptoms: An Experience Sampling Study. Front. Psychiatry 2022, 13, 920580. [Google Scholar] [CrossRef] [PubMed]
- Wichers, M.; Lothmann, C.; Simons, C.J.P.; Nicolson, N.A.; Peeters, F. The Dynamic Interplay between Negative and Positive Emotions in Daily Life Predicts Response to Treatment in Depression: A Momentary Assessment Study: Emotional Dynamics and Future Treatment Response. Brit. J. Clin. Psychol. 2012, 51, 206–222. [Google Scholar] [CrossRef]
- Kok, B.E.; Fredrickson, B.L. Upward Spirals of the Heart: Autonomic Flexibility, as Indexed by Vagal Tone, Reciprocally and Prospectively Predicts Positive Emotions and Social Connectedness. Biol. Psychol. 2010, 85, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Yerkes, R.M.; Dodson, J.D. The Relation of Strength of Stimulus to Rapidity of Habit-Formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Pauls, C.A.; Stemmler, G. Repressive and Defensive Coping during Fear and Anger. Emotion 2003, 3, 284–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quer, G.; Gouda, P.; Galarnyk, M.; Topol, E.J.; Steinhubl, S.R. Inter- and Intraindividual Variability in Daily Resting Heart Rate and Its Associations with Age, Sex, Sleep, BMI, and Time of Year: Retrospective, Longitudinal Cohort Study of 92,457 Adults. PLoS ONE 2020, 15, e0227709. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
HR and HRV Measurements | |||
---|---|---|---|
Invalid | Valid | ||
Body position | Lying | 9.5% | 90.5% |
Upright | 6.9% | 93.1% | |
Activity class | Inactive | 5.7% | 94.3% |
Active | 25.1% | 74.9% |
Full Sample N = 26 | ||
---|---|---|
n (%)/M (SD) | ||
Demographics | Gender | |
Female | 23 (88.5) | |
Male | 3 (11.5) | |
Age | 23.8 (3.0) | |
Weight (kg) | 66.1 (13.1) | |
Height (cm) | 171.7 (8.3) | |
BMI (kg/m2) | 22.3 (4.0) | |
ECG and accelerometry | MET | 1.5 (0.1) |
HR (bpm) | 87.3 (8.6) | |
HRV-LF (ms2) | 1303.2 (667.5) | |
HRV-HF (ms2) | 590.3 (389.9) | |
LF/HF ratio | 4.2 (1.5) | |
RMSSD (ms) | 33.6 (12.8) | |
Experience sampling | Questionnaires available | 926 |
per day | 132.3 (5.4) | |
per participant | 35.6 (5.8) | |
per day | 5.1 (1.2) | |
Positive affect | 172.0 (43.0) | |
Content | 61.4 (15.2) | |
Enthusiastic | 49.7 (15.1) | |
Happy | 61.0 (15.2) | |
Negative affect | 60.8 (46.1) | |
Sad | 19.0 (16.9) | |
Upset | 13.5 (12.2) | |
Worried | 28.2 (20.3) |
BP = Lying (n = 20,235) | BP = Upright (n = 107,989) | AC = Inactive (n = 119,185) | AC = Active (n = 9263) | BP = Upright/ AC = Inactive (n = 98,968) | |
---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | |
Epochs per participant | 778.3 (704.3) | 4153.4 (952.0) | 4584.0 (890.2) | 356.3 (229.1) | 3806.5 (868.8) |
HR (bpm) | 78.9 (11.2) | 89.0 (14.5) | 85.3 (12.8) | 112.4 (13.8) | 86.8 (12.6) |
HRV-LF (ms2) | 1424.6 (1247.6) | 1310.1 (1192.0) | 1360.3 (1212.6) | 678.2 (713.6) | 1375.0 (1199.7) |
HRV-HF (ms2) | 996.4 (968.2) | 548.8 (638.7) | 624.9 (709.0) | 194.6 (338.4) | 583.6 (646.0) |
LF/HF ratio | 2.7 (2.1) | 4.5 (3.5) | 4.0 (3.2) | 6.7 (4.2) | 4.3 (3.3) |
RMSSD (ms) | 43.5 (20.0) | 32.4 (16.3) | 34.9 (17.1) | 17.6 (11.3) | 33.8 (15.9) |
Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Affect | Negative Affect | |||||||||||
Aggregate | Predictor | β | SE | df | t | p | β | SE | df | t | p | |
5 min | HR | 0.14 | 0.04 | 882 | 3.40 | <0.01 | −0.03 | 0.04 | 882 | −0.75 | 0.729 | |
HRV-LF | 0.01 | 0.04 | 855 | 0.18 | 0.906 | −0.05 | 0.04 | 855 | −1.27 | 0.476 | ||
HRV-HF | −0.03 | 0.04 | 855 | −0.73 | 0.729 | −0.02 | 0.04 | 855 | −0.60 | 0.778 | ||
LF/HF ratio | 0.11 | 0.04 | 855 | 3.13 | <0.05 | −0.07 | 0.04 | 855 | −2.01 | 0.173 | ||
RMSSD | −0.04 | 0.04 | 862 | −0.99 | 0.625 | −0.03 | 0.04 | 862 | −0.71 | 0.733 | ||
10 min | HR | 0.16 | 0.04 | 894 | 4.09 | <0.001 | −0.01 | 0.04 | 894 | −0.29 | 0.875 | |
HRV-LF | −0.02 | 0.04 | 872 | −0.54 | 0.778 | −0.02 | 0.04 | 872 | −0.69 | 0.751 | ||
HRV-HF | −0.07 | 0.03 | 872 | −1.89 | 0.209 | −0.03 | 0.04 | 872 | −0.72 | 0.733 | ||
LF/HF ratio | 0.11 | 0.04 | 872 | 3.11 | <0.05 | −0.03 | 0.04 | 872 | −0.76 | 0.729 | ||
RMSSD | −0.07 | 0.04 | 879 | −1.96 | 0.185 | −0.02 | 0.04 | 879 | −0.46 | 0.814 | ||
30 min | HR | 0.15 | 0.04 | 916 | 3.90 | <0.01 | −0.02 | 0.04 | 916 | −0.53 | 0.778 | |
HRV-LF | 0.00 | 0.03 | 899 | 0.03 | 0.990 | −0.03 | 0.03 | 899 | −0.84 | 0.700 | ||
HRV-HF | −0.04 | 0.03 | 899 | −1.15 | 0.547 | 0.00 | 0.03 | 899 | −0.12 | 0.929 | ||
LF/HF ratio | 0.12 | 0.04 | 899 | 3.32 | <0.01 | −0.05 | 0.04 | 899 | −1.37 | 0.427 | ||
RMSSD | −0.06 | 0.04 | 904 | −1.69 | 0.283 | 0.00 | 0.04 | 904 | −0.12 | 0.929 |
Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Affect | Negative Affect | |||||||||||
Aggregate | Predictor | β | SE | df | t | p | β | SE | df | t | p | |
5 min | HR | 0.15 | 0.04 | 643 | 3.37 | <0.01 | −0.06 | 0.04 | 643 | −1.38 | 0.427 | |
HRV-LF | −0.01 | 0.04 | 619 | −0.36 | 0.840 | −0.03 | 0.04 | 619 | −0.77 | 0.729 | ||
HRV-HF | −0.11 | 0.04 | 619 | −2.61 | <0.05 | 0.02 | 0.04 | 619 | 0.57 | 0.778 | ||
LF/HF ratio | 0.14 | 0.04 | 619 | 3.35 | <0.01 | −0.09 | 0.04 | 619 | −2.14 | 0.144 | ||
RMSSD | −0.11 | 0.04 | 625 | −2.62 | <0.05 | 0.02 | 0.04 | 625 | 0.41 | 0.827 | ||
10 min | HR | 0.19 | 0.04 | 632 | 4.27 | <0.001 | −0.06 | 0.04 | 632 | −1.33 | 0.452 | |
HRV-LF | −0.04 | 0.04 | 613 | −0.95 | 0.653 | −0.02 | 0.04 | 613 | −0.47 | 0.814 | ||
HRV-HF | −0.13 | 0.04 | 613 | −3.03 | <0.05 | 0.01 | 0.04 | 613 | 0.17 | 0.910 | ||
LF/HF ratio | 0.13 | 0.04 | 613 | 3.13 | <0.05 | −0.05 | 0.04 | 613 | −1.17 | 0.532 | ||
RMSSD | −0.13 | 0.04 | 620 | −2.93 | <0.05 | 0.02 | 0.04 | 620 | 0.56 | 0.778 | ||
30 min | HR | 0.16 | 0.04 | 622 | 3.64 | <0.01 | −0.01 | 0.05 | 622 | −0.31 | 0.870 | |
HRV-LF | −0.02 | 0.04 | 605 | −0.54 | 0.778 | −0.04 | 0.04 | 605 | −0.93 | 0.664 | ||
HRV-HF | −0.08 | 0.05 | 605 | −1.72 | 0.273 | 0.00 | 0.05 | 605 | −0.09 | 0.950 | ||
LF/HF ratio | 0.13 | 0.04 | 605 | 3.01 | <0.05 | −0.03 | 0.04 | 605 | −0.61 | 0.778 | ||
RMSSD | −0.09 | 0.04 | 610 | −2.02 | 0.173 | −0.02 | 0.05 | 610 | −0.34 | 0.846 | ||
Before a | HR | 0.12 | 0.04 | 652 | 2.94 | <0.05 | −0.08 | 0.04 | 652 | −1.89 | 0.209 | |
HRV-LF | −0.04 | 0.04 | 646 | −1.04 | 0.607 | −0.03 | 0.04 | 646 | −0.62 | 0.778 | ||
HRV-HF | −0.06 | 0.04 | 646 | −1.57 | 0.339 | 0.00 | 0.04 | 646 | −0.03 | 0.990 | ||
LF/HF ratio | 0.11 | 0.04 | 646 | 2.82 | <0.05 | −0.08 | 0.04 | 646 | −2.09 | 0.155 | ||
RMSSD | −0.06 | 0.04 | 648 | −1.45 | 0.405 | 0.01 | 0.04 | 648 | 0.16 | 0.914 | ||
After b | HR | 0.06 | 0.05 | 540 | 1.21 | 0.503 | −0.01 | 0.04 | 540 | −0.19 | 0.906 | |
HRV-LF | 0.04 | 0.04 | 539 | 0.87 | 0.684 | −0.09 | 0.04 | 539 | −2.10 | 0.155 | ||
HRV-HF | 0.01 | 0.05 | 539 | 0.21 | 0.906 | −0.05 | 0.04 | 539 | −1.24 | 0.494 | ||
LF/HF ratio | 0.02 | 0.05 | 539 | 0.46 | 0.814 | 0.02 | 0.04 | 539 | 0.38 | 0.840 | ||
RMSSD | 0.00 | 0.04 | 539 | −0.01 | 0.995 | −0.03 | 0.04 | 539 | −0.67 | 0.765 |
Outcome | Predictor | β | SE | df | t | p | |
---|---|---|---|---|---|---|---|
Positive affect | Content | HR | 0.06 | 0.04 | 643 | 1.38 | 0.427 |
HRV-LF | −0.02 | 0.04 | 619 | −0.59 | 0.778 | ||
HRV-HF | −0.07 | 0.04 | 619 | −1.63 | 0.312 | ||
LF/HF ratio | 0.08 | 0.04 | 619 | 1.79 | 0.239 | ||
RMSSD | −0.06 | 0.04 | 625 | −1.43 | 0.409 | ||
Enthusiastic | HR | 0.19 | 0.04 | 643 | 4.25 | <0.001 | |
HRV-LF | −0.04 | 0.04 | 619 | −0.99 | 0.625 | ||
HRV-HF | −0.12 | 0.04 | 619 | −2.85 | <0.05 | ||
LF/HF ratio | 0.14 | 0.04 | 619 | 3.39 | <0.01 | ||
RMSSD | −0.14 | 0.04 | 625 | −3.23 | <0.01 | ||
Happy | HR | 0.12 | 0.04 | 643 | 2.76 | <0.05 | |
HRV-LF | 0.06 | 0.04 | 619 | 1.37 | 0.427 | ||
HRV-HF | −0.04 | 0.04 | 619 | −1.03 | 0.607 | ||
LF/HF ratio | 0.12 | 0.04 | 619 | 2.94 | <0.05 | ||
RMSSD | −0.04 | 0.04 | 625 | −0.89 | 0.680 | ||
Negative affect | Sad | HR | −0.11 | 0.04 | 643 | −2.42 | 0.070 |
HRV-LF | 0.01 | 0.04 | 619 | 0.18 | 0.906 | ||
HRV-HF | 0.05 | 0.04 | 619 | 1.07 | 0.589 | ||
LF/HF ratio | −0.08 | 0.04 | 619 | −1.86 | 0.217 | ||
RMSSD | 0.07 | 0.04 | 625 | 1.64 | 0.309 | ||
Upset | HR | 0.03 | 0.05 | 643 | 0.57 | 0.778 | |
HRV-LF | −0.01 | 0.04 | 619 | −0.20 | 0.906 | ||
HRV-HF | −0.03 | 0.04 | 619 | −0.77 | 0.729 | ||
LF/HF ratio | 0.02 | 0.04 | 619 | 0.41 | 0.827 | ||
RMSSD | −0.05 | 0.04 | 625 | −1.12 | 0.562 | ||
Worried | HR | −0.08 | 0.04 | 643 | −1.84 | 0.222 | |
HRV-LF | −0.04 | 0.04 | 619 | −1.07 | 0.589 | ||
HRV-HF | 0.06 | 0.04 | 619 | 1.43 | 0.409 | ||
LF/HF ratio | −0.13 | 0.04 | 619 | −3.02 | <0.05 | ||
RMSSD | 0.07 | 0.04 | 625 | 1.60 | 0.322 |
Outcomes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Affect | Negative Affect | |||||||||||
Stratification | Predictor | β | SE | df | t | p | β | SE | df | t | p | |
Overall | HR | 0.18 | 0.19 | 26 | 0.94 | 0.665 | −0.16 | 0.21 | 26 | −0.76 | 0.729 | |
HRV-LF | 0.28 | 0.20 | 26 | 1.41 | 0.430 | −0.19 | 0.23 | 26 | −0.85 | 0.700 | ||
HRV-HF | 0.15 | 0.20 | 26 | 0.76 | 0.729 | 0.04 | 0.22 | 26 | 0.19 | 0.906 | ||
LF/HF ratio | 0.14 | 0.21 | 26 | 0.65 | 0.778 | −0.46 | 0.21 | 26 | −2.18 | 0.169 | ||
RMSSD | 0.10 | 0.20 | 26 | 0.52 | 0.786 | 0.06 | 0.22 | 26 | 0.26 | 0.882 | ||
BP = lying | HR | −0.06 | 0.19 | 26 | −0.29 | 0.875 | 0.11 | 0.21 | 26 | 0.50 | 0.797 | |
HRV-LF | 0.35 | 0.18 | 26 | 1.91 | 0.231 | −0.19 | 0.21 | 26 | −0.89 | 0.684 | ||
HRV-HF | 0.30 | 0.19 | 26 | 1.61 | 0.349 | −0.06 | 0.22 | 26 | −0.27 | 0.877 | ||
LF/HF ratio | 0.11 | 0.20 | 26 | 0.55 | 0.778 | −0.28 | 0.22 | 26 | −1.32 | 0.476 | ||
RMSSD | 0.30 | 0.19 | 26 | 1.60 | 0.350 | −0.12 | 0.22 | 26 | −0.55 | 0.778 | ||
BP = upright | HR | 0.21 | 0.19 | 26 | 1.13 | 0.575 | −0.21 | 0.21 | 26 | −1.02 | 0.625 | |
HRV-LF | 0.30 | 0.20 | 26 | 1.48 | 0.409 | −0.20 | 0.23 | 26 | −0.86 | 0.700 | ||
HRV-HF | 0.11 | 0.20 | 26 | 0.54 | 0.778 | 0.08 | 0.22 | 26 | 0.37 | 0.840 | ||
LF/HF ratio | 0.12 | 0.21 | 26 | 0.59 | 0.778 | −0.45 | 0.21 | 26 | −2.14 | 0.173 | ||
RMSSD | 0.07 | 0.20 | 26 | 0.35 | 0.846 | 0.08 | 0.22 | 26 | 0.38 | 0.840 | ||
AC = inactive | HR | 0.18 | 0.19 | 26 | 0.97 | 0.653 | −0.16 | 0.21 | 26 | −0.74 | 0.729 | |
HRV-LF | 0.25 | 0.20 | 26 | 1.26 | 0.498 | −0.17 | 0.22 | 26 | −0.75 | 0.729 | ||
HRV-HF | 0.13 | 0.20 | 26 | 0.65 | 0.778 | 0.05 | 0.22 | 26 | 0.24 | 0.891 | ||
LF/HF ratio | 0.13 | 0.21 | 26 | 0.64 | 0.778 | −0.44 | 0.21 | 26 | −2.11 | 0.179 | ||
RMSSD | 0.09 | 0.20 | 26 | 0.43 | 0.826 | 0.07 | 0.22 | 26 | 0.30 | 0.875 | ||
AC = active | HR | 0.12 | 0.20 | 26 | 0.60 | 0.778 | −0.10 | 0.22 | 26 | −0.44 | 0.826 | |
HRV-LF | 0.40 | 0.22 | 26 | 1.77 | 0.283 | −0.33 | 0.26 | 26 | −1.29 | 0.489 | ||
HRV-HF | 0.18 | 0.20 | 26 | 0.94 | 0.666 | 0.00 | 0.22 | 26 | 0.01 | 0.995 | ||
LF/HF ratio | −0.11 | 0.20 | 26 | −0.55 | 0.778 | −0.05 | 0.22 | 26 | −0.23 | 0.895 | ||
RMSSD | 0.17 | 0.21 | 26 | 0.84 | 0.700 | 0.03 | 0.23 | 26 | 0.14 | 0.928 | ||
BP = upright/ | HR | 0.21 | 0.19 | 26 | 1.10 | 0.589 | −0.19 | 0.21 | 26 | −0.91 | 0.680 | |
AC = inactive | HRV-LF | 0.27 | 0.20 | 26 | 1.36 | 0.455 | −0.18 | 0.23 | 26 | −0.81 | 0.727 | |
HRV-HF | 0.09 | 0.20 | 26 | 0.46 | 0.814 | 0.09 | 0.22 | 26 | 0.40 | 0.840 | ||
LF/HF ratio | 0.12 | 0.21 | 26 | 0.59 | 0.778 | −0.43 | 0.21 | 26 | −2.07 | 0.185 | ||
RMSSD | 0.06 | 0.20 | 26 | 0.28 | 0.875 | 0.08 | 0.22 | 26 | 0.39 | 0.840 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachenberger, J.; Li, Y.-M.; Siniatchkin, M.; Hermenau, K.; Ludyga, S.; Lemola, S. Heart Rate Variability’s Association with Positive and Negative Affect in Daily Life: An Experience Sampling Study with Continuous Daytime Electrocardiography over Seven Days. Sensors 2023, 23, 966. https://doi.org/10.3390/s23020966
Hachenberger J, Li Y-M, Siniatchkin M, Hermenau K, Ludyga S, Lemola S. Heart Rate Variability’s Association with Positive and Negative Affect in Daily Life: An Experience Sampling Study with Continuous Daytime Electrocardiography over Seven Days. Sensors. 2023; 23(2):966. https://doi.org/10.3390/s23020966
Chicago/Turabian StyleHachenberger, Justin, Yu-Mei Li, Michael Siniatchkin, Katharin Hermenau, Sebastian Ludyga, and Sakari Lemola. 2023. "Heart Rate Variability’s Association with Positive and Negative Affect in Daily Life: An Experience Sampling Study with Continuous Daytime Electrocardiography over Seven Days" Sensors 23, no. 2: 966. https://doi.org/10.3390/s23020966
APA StyleHachenberger, J., Li, Y. -M., Siniatchkin, M., Hermenau, K., Ludyga, S., & Lemola, S. (2023). Heart Rate Variability’s Association with Positive and Negative Affect in Daily Life: An Experience Sampling Study with Continuous Daytime Electrocardiography over Seven Days. Sensors, 23(2), 966. https://doi.org/10.3390/s23020966