Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation
Abstract
:1. Introduction
2. Motivation and Methodology
3. Overview of Applications of Digital Twins
3.1. Healthcare
3.2. Automation and Robotics
4. Overview of Needs in Rehabilitation
- What are your major problems while performing the therapy? (up to three answers chosen from the list or optionally added and then grouped into the categories)
- What are your wishes related to physiotherapy, even unrealistic? (up to three answers grouped into the categories)
5. Original Concept
5.1. Robot-Aided Rehabilitation
5.2. Remote Treatment
5.3. Digital Twin in VR Based Control
6. Discussion
6.1. Benefits
6.2. Major Challenges
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orlosky, J.; Sra, M.; Bektaş, K.; Peng, H.; Kim, J.; Kos’Myna, N.; Höllerer, T.; Steed, A.; Kiyokawa, K.; Akşit, K. Telelife: The Future of Remote Living. Front. Virtual Real. 2021, 2, 763340. [Google Scholar] [CrossRef]
- Boulos, M.K.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef]
- DeFre Galea, M. Telemedicine in Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2019, 30, 473–483. [Google Scholar] [CrossRef]
- Volkov, I.; Radchenko, G.; Tchernykh, A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare. Program. Comput. Softw. 2021, 47, 578–590. [Google Scholar] [CrossRef]
- Díaz, I.; Gil, J.J.; Sánchez, E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J. Robot. 2011, 2011, 759764. [Google Scholar] [CrossRef] [Green Version]
- Braun, M. Represent me: Please! Towards an ethics of digital twins in medicine. J. Med. Ethics 2021, 47, 394–400. [Google Scholar] [CrossRef]
- Bruynseels, K.; de Sio, F.S.; Hoven, J.V.D. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef]
- Björnsson, B.; on behalf of the Swedish Digital Twin Consortium; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Voigt, I.; Inojosa, H.; Dillenseger, A.; Haase, R.; Akgün, K.; Ziemssen, T. Digital Twins for Multiple Sclerosis. Front. Immunol. 2021, 12, 669811. [Google Scholar] [CrossRef]
- Burdea, G. Virtual Rehabilitation- Benefits and Challenges. Methods Inf. Med. 2003, 42, 519–523. [Google Scholar]
- Díaz, R.G.; Yu, Q.; Ding, Y.; Laamarti, F.; El Saddik, A. Digital Twin Coaching for Physical Activities: A Survey. Sensors 2020, 20, 5936. [Google Scholar] [CrossRef]
- Shamanna, P.; Mala Dharmalingam, M.; Sahay, R.; Mohammed, J.; Mohamed, M.; Poon, T.; Kleinman, N.; Thajudeen, M. Retrospective study of glycemic variability, BMI, and blood pressure in diabetes patients in the Digital Twin Precision Treatment Program. Sci. Rep. 2021, 11, 14892. [Google Scholar] [CrossRef]
- Shengli, W. Is Human Digital Twin possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [Google Scholar] [CrossRef]
- Ahmed, H.; Devoto, L. The Potential of a Digital Twin in Surgery. Surg. Innov. 2020, 28, 509–510. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the Integration of Agents and Digital Twins in Healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, Y.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, M.; Damiani, C.; Vanoni, M.; Maspero, D.; Mauri, G.; Alberghina, L.; Pescini, D. Single-cell Digital Twins for Cancer Preclinical Investigation. In Metabolic Flux Analysis in Eukaryotic Cells; Humana: New York, NY, USA, 2020; pp. 331–343. [Google Scholar] [CrossRef]
- Croatti, A.; Montagna, S.; Ricci, A. A Personal Medical Digital Assistant Agent for Supporting Human Operators in Emergency Scenarios. In Agents and Multi-Agent Systems for Health Care; Springer: Cham, Switzerland, 2017; pp. 59–75. [Google Scholar] [CrossRef]
- Zohdi, T.I. A digital-twin and machine-learning framework for the design of multiobjective agrophotovoltaic solar farms. Comput. Mech. 2021, 68, 357–370. [Google Scholar] [CrossRef]
- Lv, Q.; Zhang, R.; Sun, X.; Lu, Y.; Bao, J. A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19. J. Manuf. Syst. 2021, 60, 837–851. [Google Scholar] [CrossRef]
- Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, J.; Ye, L.; Gao, R.X. Digital Twin for Machining Tool Condition Prediction. Procedia CIRP 2019, 81, 1388–1393. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Xu, X. Visualisation of the Digital Twin data in manufacturing by using Augmented Reality. Procedia CIRP 2019, 81, 898–903. [Google Scholar] [CrossRef]
- Hebenstreit, M.; Spitzer, M. An Industry 4.0 Production Workplace Enhanced by Using Mixed Reality Assembly Instructions with Microsoft HoloLens. In Mensch Und Comput. 2020-Workshopband; Hansen, C., Nürnberger, A., Preim, B., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2020. [Google Scholar]
- Hietanen, A.; Pieters, R.; Lanz, M.; Latokartano, J.; Kämäräinen, J.-K. AR-based interaction for human-robot collaborative manufacturing. Robot. Comput. Manuf. 2019, 63, 101891. [Google Scholar] [CrossRef]
- Burghardt, A.; Szybicki, D.; Gierlak, P.; Kurc, K.; Pietruś, P.; Cygan, R. Programming of Industrial Robots Using Virtual Reality and Digital Twins. Appl. Sci. 2020, 10, 486. [Google Scholar] [CrossRef] [Green Version]
- Kuts, V.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital twin based synchronised control and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng. 2019, 19, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Zubiaga, D.; Kuts, V.; Mahmood, K.; Bondar, A.; Nasajpour-Esfahani, N.; Otto, T. An approach to develop a digital twin for industry 4.0 systems: Manufacturing automation case studies. Int. J. Comput. Integr. Manuf. 2021, 34, 933–949. [Google Scholar] [CrossRef]
- Kamenov, K.; Mills, J.-A.; Chatterji, S.; Cieza, A. Needs and unmet needs for rehabilitation services: A scoping review. Disabil. Rehabil. 2018, 41, 1227–1237. [Google Scholar] [CrossRef]
- Jesus, T.S.; Landry, M.D.; Dussault, G.; Fronteira, I. Human resources for health (and rehabilitation): Six Rehab-Workforce Challenges for the century. Hum. Resour. Health 2017, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Rauch, A.; Cieza, A.; Stucki, G. How to apply the International Classification of Functioning, Disability and Health (ICF) for rehabilitation management in clinical practice. Eur. J. Phys. Rehabil. Med. 2008, 44, 329–342. [Google Scholar]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-minute walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719870084. [Google Scholar] [CrossRef]
- Liu, F.; Tsang, R.C.; Zhou, J.; Zhou, M.; Zha, F.; Long, J.; Wang, Y. Relationship of Barthel Index and its Short Form with the Modified Rankin Scale in acute stroke patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 105033. [Google Scholar] [CrossRef]
- Macovei, S.; Doroftei, I. A short overview of upper limb rehabilitation devices. IOP Conf. Ser. Mater. Sci. Eng. 2016, 145, 052014. [Google Scholar] [CrossRef]
- Chang, W.H.; Yun-Hee, K. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef]
- Coote, S.; Murphy, T.B.; Harwin, W.; Stokes, E. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 2008, 22, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Lum, P.S.; Burgar, C.G.; Van der Loos, M.; Shor, P.C.; Majmundar, M.; Yap, R. Undefined 2006, “MIME Robotic Device for Upper-Limb Neurorehabilitation in Subacute Stroke Subjects: A Follow-Up Study,” books.google.com. Available online: https://www.google.com/books?hl=pl&lr=&id=O2y3AAAAIAAJ&oi=fnd&pg=PA631&dq=MIME+robotic+device+for+upper-limb+neurorehabilitation+in+subacute+stroke+subjects:+A+follow-up+study&ots=0uBlXrFRkA&sig=Hp18z8l79EfoI0Nca-FD56upOOw (accessed on 25 February 2022).
- Wang, H.; Feng, Y.; Yu, H.; Wang, Z.; Vladareanuv, V.; Du, Y. Mechanical design and trajectory planning of a lower limb rehabilitation robot with a variable workspace. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418776855. [Google Scholar] [CrossRef] [Green Version]
- Oña, E.D.; Cano-de La Cuerda, R.; Sánchez-Herrera, P.; Balaguer, C.; Jardón, A. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. J. Healthc. Eng. 2018, 2018, 9758939. [Google Scholar] [CrossRef]
- Arciniegas-Mayag, L.; Rodriguez-Guerrero, C.; Rocon, E.; Múnera, M.; Cifuentes, C.A. Impedance Control Strategies for Lower-Limb Exoskeletons. In Interfacing Humans and Robots for Gait Assistance and Rehabilitation; Springer: Cham, Switzerland, 2022; pp. 213–236. [Google Scholar] [CrossRef]
- Olar, M.-L.; Leba, M.; Risteiu, M. Exoskeleton—Wearable devices. Literature review. MATEC Web Conf. 2021, 342, 05005. [Google Scholar] [CrossRef]
- Lee, H.; Ferguson, P.W.; Rosen, J. Lower Limb Exoskeleton Systems—Overview. Wearable Robot. 2020, 207–229. [Google Scholar] [CrossRef]
- Ferraro, E.I.; Orofino, F.; Parisi, M.C.; Bellomo, M.; Francavilla, V.C.; Crescimanno, C. Artificial musculature: An overview of the different exoskeleton models and their applications. J. Hum. Sport Exerc. 2021, 16, S892–S904. [Google Scholar] [CrossRef]
- Falkowski, P. Light Exoskeleton Design with Topology Optimisation and FEM Simulations for FFF Technology. J. Autom. Mob. Robot. Intell. Syst. 2022, 16, 14–19. [Google Scholar] [CrossRef]
- Brennan, D.M.; Mawson, S.; Brownsell, S. Telerehabilitation: Enabling the Remote Delivery of Healthcare, Rehabilitation, and Self Management. Stud. Health Technol. Inform. 2009, 145, 231–248. [Google Scholar] [CrossRef]
- Postolache, O.; Hemanth, D.J.; Alexandre, R.; Gupta, D.; Geman, O.; Khanna, A. Remote Monitoring of Physical Rehabilitation of Stroke Patients Using IoT and Virtual Reality. IEEE J. Sel. Areas Commun. 2020, 39, 562–573. [Google Scholar] [CrossRef]
- Durfee, W.K.; Savard, L.; Weinstein, S. Technical Feasibility of Teleassessments for Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 23–29. [Google Scholar] [CrossRef]
- Bettger, J.P.; Resnik, L.J. Telerehabilitation in the Age of COVID-19: An Opportunity for Learning Health System Research. Phys. Ther. 2020, 100, 1913–1916. [Google Scholar] [CrossRef]
- Kahn, L.E.; Lum, P.S.; Rymer, W.Z.; Reinkensmeyer, D.J. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J. Rehabil. Res. Dev. 2006, 43, 619–630. [Google Scholar] [CrossRef]
- Givon-Mayo, R.; Simons, E.; Ohry, A.; Karpin, H.; Israely, S.; Carmeli, E. A preliminary investigation of error enhancement of the velocity component in stroke patients’ reaching movements. Int. J. Ther. Rehabil. 2014, 21, 160–168. [Google Scholar] [CrossRef]
- Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S. Robotics-based synthesis of human motion. J. Physiol. 2009, 103, 211–219. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, M.; Swash, M. Motor unit recruitment in myopathy: The myopathic EMG reconsidered. J. Electromyogr. Kinesiol. 2019, 45, 41–45. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Li, S.; Magat, E.; Zhou, P.; Li, S. Motor Overflow and Spasticity in Chronic Stroke Share a Common Pathophysiological Process: Analysis of Within-Limb and between-Limb EMG-EMG Coherence. Front. Neurol. 2018, 9, 795. [Google Scholar] [CrossRef]
- Morris, J. Amyotrophic Lateral Sclerosis (ALS) and Related Motor Neuron Diseases: An Overview. Neurodiagnostic J. 2015, 55, 180–194. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, G.; Cho, D.Y.; Kim, H.Y.; Lee, J.-Y.; Kim, S.; Park, S.-B.; Shin, J.-H. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci. Rep. 2020, 10, 1806. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.L.; et al. Robot assisted training for the upper limb after stroke (RATULS): A multicentre randomized controlled trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Straudi, S.; Tramontano, M.; Russo, E.F.; Perrero, L.; Agostini, M.; Gandolfi, M.; Aprile, I.; Paci, M.; Casanova, E.; Marino, D.; et al. Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Appl. Sci. 2021, 12, 222. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Duret, C.; Grosmaire, A.G.; Battini, E. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. BioMed Res. Int. 2017, 2017, 8905637. [Google Scholar] [CrossRef]
- Novak, D.; Riener, R. Control Strategies and Artificial Intelligence in Rehabilitation Robotics. AI Mag. 2015, 36, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-H.; Pilati, F.; Qu, T.; Huang, G.Q. Digital twin-enabled smart industrial systems: Recent developments and future perspectives. Int. J. Comput. Integr. Manuf. 2021, 34, 685–689. [Google Scholar] [CrossRef]
- Pogliani, M.; Quarta, D.; Polino, M.; Vittone, M.; Maggi, F.; Zanero, S. Security of controlled manufacturing systems in the connected factory: The case of industrial robots. J. Comput. Virol. Hacking Tech. 2019, 15, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Niehorster, D.C.; Li, L.; Lappe, M. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research. I-Perception 2017, 8, 2041669517708205. [Google Scholar] [CrossRef]
- Chang, C.-M.; Hsu, C.-H.; Hsu, C.-F.; Chen, K.-T. Performance Measurements of Virtual Reality Systems. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 655–659. [Google Scholar] [CrossRef]
- Liao, X.; Wang, Z.; Zhao, X.; Han, K.; Tiwari, P.; Barth, M.J.; Wu, G. Cooperative Ramp Merging Design and Field Implementation: A Digital Twin Approach Based on Vehicle-to-Cloud Communication. 2021. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9502522 (accessed on 24 February 2022).
- Almasan, P.; Ferriol-Galmés, M.; Paillisse, J.; Suárez-Varela, J.; Perino, D.; López, D.; Perales, A.A.P.; Harvey, P.; Ciavaglia, L.; Wong, L.; et al. Digital twin network: Opportunities and challenges. arXiv preprint 2022, arXiv:2201.01144. [Google Scholar]
- Dong, R.; She, C.; Hardjawana, W.; Li, Y.; Vucetic, B. Deep Learning for Hybrid 5G Services in Mobile Edge Computing Systems: Learn From a Digital Twin. IEEE Trans. Wirel. Commun. 2019, 18, 4692–4707. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Abel, K.T.; Janecek, J.T.; Chen, Y.; Zheng, K.; Cramer, S.C. Home-based technologies for stroke rehabilitation: A systematic review. Int. J. Med. Inform. 2018, 123, 11–22. [Google Scholar] [CrossRef]
- Veneman, J.F. Safety Standardization of Wearable Robots—The Need for Testing Methods. In Wearable Robotics: Challenges and Trends; Springer: Cham, Switzerland, 2017; pp. 189–193. [Google Scholar] [CrossRef]
- Evans, S.H.; Cameron, M.W.; Burton, J. Hypertonia. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 161–166. [Google Scholar] [CrossRef]
- Pérez Ariza, V.Z.; Santís-Chaves, M. Haptic Interfaces: Kinesthetic vs. Tactile Systems. Rev. EIA 2016. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372016000200002 (accessed on 25 February 2022).
- Arz, G.; Toth, A. REHAROB: A project and a system for motion diagnosis and robotized physiotherapy delivery. In Proceedings of the Integration of Assistive Technology in the Information Age: ICORR’2001, 7th International Conference on Rehabilitation Robotics, Evry, France, 25–27 April 2001; pp. 93–100. [Google Scholar]
- Derungs, A.; Schuster-Amft, C.; Amft, O. Wearable motion sensors and digital biomarkers in stroke rehabilitation. Curr. Dir. Biomed. Eng. 2020, 6, 229–232. [Google Scholar] [CrossRef]
- Falkowski, P. Predicting Dynamics of a Rehabilitation Exoskeleton with Free Degrees of Freedom. Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques, AUTOMATION 2022. Adv. Intell. Syst. Comput. 2022, 1427, 223–232. [Google Scholar] [CrossRef]
Application | Measured | Reference |
---|---|---|
Precision treatment with the prediction of future health states | Heart rate, blood pressure, blood glucose, blood BHB level, weight, sleep parameters, step count | [13] |
Full lifecycle management (concept presented only) | Heart rate, blood pressure, blood glucose, weight, respiration, exercise volume, emotional changes | [14] |
Trauma management (integration of multiple digital twins—concept presented only) | GPS-based position of the rescue vehicle, medical parameters measured in a hospital or by medical rescuers | [16] |
Cardiovascular medicine (concept presented only) | Information from private wearable sensors of patient | [17] |
Cancer preclinical investigation | Metabolic parameters of cells | [18] |
Trauma management | Vision of the trauma team members | [19] |
Application | Measured | Reference |
---|---|---|
Prediction of the machining tool condition | Forces, vibrations, acoustic emission | [23] |
Visualisation of data regarding industrial process | Devices’ process-related parameters | [24] |
Visualisation of the assembly process | Vision of the operator | [25] |
Safety monitoring for human–robot collaboration | Human kinematic parameters, robot’s kinematic parameters | [26] |
Immersive remote programming of industrial robots | Robot’s kinematic parameters, movements of the VR controllers | [27] |
Immersive remote programming of industrial robots | Robot’s kinematic parameters | [28] |
Age [years] | Below 25 | 9.4% |
25–30 | 40.6% | |
31–40 | 41.6% | |
41–50 | 5.8% | |
Over 50 | 2.9% | |
Size of the city where the job is performed [number of inhabitants] | Over 250,000 | 36.2% |
100,000–250,000 | 15.2% | |
50,000–100,000 | 12.3% | |
10,000–50,000 | 19.6% | |
5000–10,000 | 8.7% | |
Below 5000 | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowski, P.; Osiak, T.; Wilk, J.; Prokopiuk, N.; Leczkowski, B.; Pilat, Z.; Rzymkowski, C. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. Sensors 2023, 23, 911. https://doi.org/10.3390/s23020911
Falkowski P, Osiak T, Wilk J, Prokopiuk N, Leczkowski B, Pilat Z, Rzymkowski C. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. Sensors. 2023; 23(2):911. https://doi.org/10.3390/s23020911
Chicago/Turabian StyleFalkowski, Piotr, Tomasz Osiak, Julia Wilk, Norbert Prokopiuk, Bazyli Leczkowski, Zbigniew Pilat, and Cezary Rzymkowski. 2023. "Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation" Sensors 23, no. 2: 911. https://doi.org/10.3390/s23020911
APA StyleFalkowski, P., Osiak, T., Wilk, J., Prokopiuk, N., Leczkowski, B., Pilat, Z., & Rzymkowski, C. (2023). Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. Sensors, 23(2), 911. https://doi.org/10.3390/s23020911