Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
- Have been proposed for IoTS development.
- Comply with the life cycle of software systems according to standards issued jointly by the International Organization for Standardisation (ISO), the International Electrotechnical Commission (IEC), and the Institute of Electrical and Electronics Engineers (IEEE). The application of ISO/IEC/IEEE 15289:2019 [61] to the development of IoTSs contributes to the delivery of a quality product on time and within budget [62].
- Consider the specific developmental aspects of IoTSs.
1.3. State of the Art in Methodologies to Develop IoTSs
2. Methodologies Designed for the Development of IoTSs
2.1. Stages or Processes of the Software System Development Life Cycle
2.2. Standards That Define the Stages and Processes of the Software Systems Life Cycle
2.3. IoTS Development Methodologies Based on the Agile Manifesto
2.3.1. Guidelines for Project Risk Management
2.3.2. End-User Needs and Requirements Definition Process
2.3.3. Non-Functional Requirements
2.3.4. Number of Development Team Members
2.4. Modeling as a Key in IoTS Development Methodologies
3. Methodologies for Traditional IS Development Applied to IoTS Development
3.1. Methodologies, Tools, and Frameworks Focused on the Design and Construction of Software for IoTSs
3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE Standards
- Proper compliance. The authors have addressed all stages of the software/system life cycle, recording evidence of this, such as explaining what it consists of, and the tools to be used, among other aspects (✓).
- Incomplete compliance. The authors, although not specifically naming some stages, name some activities, tools to be used, or other aspects of those missing stages. For example, they mention the use of use case diagrams, class diagrams, or software generation from models, among others ().
- Legacy compliance. The authors do not explicitly name some stages because they are part of or already present in the approaches on which they are based. For example, in some cases, they mention that they are based on the fundamentals of SCRUM, which suggests that the planning stage is carried out (±).
- Inadequate compliance. Works in which the importance of some stage is mentioned, but without giving more detail on how to carry it out (~).
- Non-existent compliance. Works in which their authors do not mention activities of some stages or even do not mention certain stages (✗).
4. Other Proposals for the Development of IoTSs
5. Architectures for IoTSs
5.1. Layered Architecture
5.2. Service-Oriented Architectures
5.3. Other Types of Architectures
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Royce, W.W. Managing the Development of Large Software Systems: Concepts and Techniques. In Proceedings of the 9th International Conference on Software Engineering, ICSE ’87, Monterey, CA, USA, 30 March–2 April 1987; IEEE Computer Society Press: Monterey, CA, USA, 1987; pp. 1–9, ISBN 0897912160. [Google Scholar]
- Boehm, B.W. A Spiral Model of Software Development and Enhancement. Computer 1988, 21, 61–72. [Google Scholar] [CrossRef]
- Lantz, K.E. The Prototyping Methodology; Prentice-Hall: Saddle River, NJ, USA, 1986; ISBN 978-0-8359-5897-4. [Google Scholar]
- Fern, D.A.; Donaldson, S.E. Tri-Cycle: A Prototype Methodology for Advanced Software Development. In Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences; IEEE Computer Society: Kailua-Kona, HI, USA, 1989; Volume 2, pp. 377–386. [Google Scholar] [CrossRef]
- Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development Methods: Review and Analysis. arXiv 2002. [Google Scholar] [CrossRef]
- Anwer, F.; Aftab, S.; Waheed, U.; Muhammad, S.S. Agile Software Development Models TDD, FDD, DSDM, and Crystal Methods: A Survey. Int. J. Multidiscip. Sci. 2017, 8, 1–10. Available online: http://www.ijmse.org/Volume8/Issue2/paper1.pdf (accessed on 21 October 2022).
- Srivastava, A.; Bhardwaj, S.; Saraswat, S. SCRUM Model for Agile Methodology. In Proceedings of the IEEE International Conference on Computing, Communication and Automation, ICCCA 2017, Greater Noida, India, 5–6 May 2017; IEEE: Greater Noida, India, 2017; Volume 2017, pp. 864–869. [Google Scholar] [CrossRef]
- Schwaber, K.; Sutherland, J. The Scrum Guide. Acrum Allience 2011, 21, 1. [Google Scholar]
- Salo, O.; Abrahamsson, P. Agile Methods in European Embedded Software Development Organisations: A Survey on the Actual Use and Usefulness of Extreme Programming and Scrum. IET Software 2008, 2, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Holzinger, A.; Errath, M.; Searle, G.; Thurnher, B.; Slany, W. From Extreme Programming and Usability Engineering to Extreme Usability in Software Engineering Education (XP+UE→XU). In Proceedings of the International Computer Software and Applications Conference, Edinburgh, UK, 26–28 July 2005; IEEE: Edinburgh, UK, 2005; Volume 2, pp. 169–172. [Google Scholar] [CrossRef]
- Stott, W. Extreme Programming: Turning the World Upside Down. IEE Comput. Control. Eng. 2003, 14, 18–23. [Google Scholar] [CrossRef]
- Schwabe, D.; Rossi, G. Building Hypermedia Applications as Navigational Views of Information Models. In Proceedings of the Annual Hawaii International Conference on System Sciences 1995, Maui, HI, USA, 3–6 January 1995; Volume 3, pp. 231–240. [Google Scholar] [CrossRef]
- Schwabe, D.; Rossi, G. The Object-Oriented Hypermedia Design Model. Commun. ACM 1995, 38, 45–46. [Google Scholar] [CrossRef]
- Garzotto, F.; Paolini, P.; Schwabe, D. HDM—A Model-Based Approach to Hypertext Application Design. ACM Trans. Inf. Syst. 1993, 11, 1–26. [Google Scholar] [CrossRef]
- Garzotto, F.; Mainetti, L.; Paolini, P. Navigation Patterns in Hypermedia Data Bases. In Proceedings of the Annual Hawaii International Conference on System Sciences, Wailea, HI, USA, 5–8 January 1993; IEEE: Wailea, HI, USA, 1993; Volume 3, pp. 370–379. [Google Scholar] [CrossRef]
- Lange, D.B. Object-Oriented Hypermodeling of Hypertext Supported Information Systems. In Proceedings of the Annual Hawaii International Conference on System Sciences, Wailea, HI, USA, 5–8 January 1993; IEEE Computer Society: Wailea, HI, USA, 1993; Volume 3, pp. 380–389. [Google Scholar] [CrossRef]
- Lange, D.B. Object-Oriented Design Method for Hypermedia Information Systems. In Proceedings of the Hawaii International Conference on System Sciences, Wailea, HI, USA, 4–7 January 1994; IEEE: Wailea, HI, USA, 1994; Volume 3, pp. 366–375. [Google Scholar] [CrossRef]
- Lange, D.B. An Object-oriented Design Approach for Developing Hypermedia Information Systems. J. Organ. Comput. Electron. Commer. 2009, 6, 269–293. [Google Scholar] [CrossRef]
- Isakowitz, T.; Stohr, E.A.; Balasubramanian, P. RMM: A Methodology for Structured Hypermedia Design. Commun. ACM 1995, 38, 34–44. [Google Scholar] [CrossRef]
- Bieber, M.P.; Isakowitz, T. Introduction to the Special Issue: Hypermedia in Information Systems and Organizations. J. Organ. Comput. Electron. Commer. 2009, 6, 3–7. [Google Scholar] [CrossRef]
- Singh, D.; Tripathi, G.; Jara, A.J. A Survey of Internet-of-Things: Future Vision, Architecture, Challenges and Services. In Proceedings of the 2014 IEEE World Forum on Internet of Things, WF-IoT 2014, Seoul, Republic of Korea, 6–8 March 2014; IEEE Computer Society: Seoul, Republic of Korea, 2014; pp. 287–292. [Google Scholar] [CrossRef]
- Guerrero-Ulloa, G.; Rodríguez-Domínguez, C.; Hornos, M.J. IoT-Based System to Help Care for Dependent Elderly. Commun. Comput. Inf. Sci. 2019, 895, 41–55. [Google Scholar] [CrossRef]
- Dado, M.; Janota, A.; Spalek, J. Challenges and Unwanted Features of the Smarter Cities Development. Lect. Notes Inst. Comput. Sci. Soc.-Inform. Telecommun. Eng. LNICST 2015, 151, 3–8. [Google Scholar] [CrossRef]
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef]
- Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Santos, P.M.; Rodrigues, J.G.P.; Cruz, S.B.; Lourenço, T.; D’Orey, P.M.; Luis, Y.; Rocha, C.; Sousa, S.; Crisóstomo, S.; Queirós, C.; et al. PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet Things J. 2018, 5, 523–532. [Google Scholar] [CrossRef]
- Pan, J.; Jain, R.; Paul, S.; Vu, T.; Saifullah, A.; Sha, M. An Internet of Things Framework for Smart Energy in Buildings: Designs, Prototype, and Experiments. IEEE Internet Things J. 2015, 2, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Ta-Shma, P.; Akbar, A.; Gerson-Golan, G.; Hadash, G.; Carrez, F.; Moessner, K. An Ingestion and Analytics Architecture for IoT Applied to Smart City Use Cases. IEEE Internet Things J. 2018, 5, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Ng, I.C.L.; Wakenshaw, S.Y.L. The Internet-of-Things: Review and Research Directions. Int. J. Res. Mark. 2017, 34, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things Security: A Survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Guerrero-Ulloa, G.; Hornos, M.J.; Rodríguez-Domínguez, C.; Fernández-Coello, M.M. IoT-Based Smart Medicine Dispenser to Control and Supervise Medication Intake. In Proceedings of the Intelligent Environments 2020: Workshop Proceedings of the 16th International Conference on Intelligent Environments 2020, Madrid, Spain, 20–23 July 2020; pp. 39–48. [Google Scholar] [CrossRef]
- Matias, I.; Garcia, N.; Pirbhulal, S.; Felizardo, V.; Pombo, N.; Zacarias, H.; Sousa, M.; Zdravevski, E. Prediction of Atrial Fibrillation Using Artificial Intelligence on Electrocardiograms: A Systematic Review. Comput. Sci. Rev. 2021, 39, 100334. [Google Scholar] [CrossRef]
- Han, T.; Zhang, L.; Pirbhulal, S.; Wu, W.; de Albuquerque, V.H.C. A Novel Cluster Head Selection Technique for Edge-Computing Based IoMT Systems. Comput. Netw. 2019, 158, 114–122. [Google Scholar] [CrossRef]
- Dayo, Z.A.; Aamir, M.; Dayo, S.A.; Khoso, I.A.; Soothar, P.; Sahito, F.; Zheng, T.; Hu, Z.; Guan, Y. A Novel Compact Broadband and Radiation Efficient Antenna Design for Medical IoT Healthcare System. Math. Biosci. Eng. 2022, 19, 3909–3927. [Google Scholar] [CrossRef] [PubMed]
- Memon, S.K.; Nisar, K.; Hijazi, M.H.A.; Chowdhry, B.S.; Sodhro, A.H.; Pirbhulal, S.; Rodrigues, J.J.P.C. A Survey on 802.11 MAC Industrial Standards, Architecture, Security & Supporting Emergency Traffic: Future Directions. J. Ind. Inf. Integr. 2021, 24, 100225. [Google Scholar] [CrossRef]
- Guarda, T.; Leon, M.; Augusto, M.F.; Haz, L.; de La Cruz, M.; Orozco, W.; Alvarez, J. Internet of Things Challenges. In Proceedings of the Iberian Conference on Information Systems and Technologies, CISTI, Lisbon, Portugal, 21–24 June 2017; IEEE: Lisbon, Portugal, 2017. [Google Scholar] [CrossRef]
- Guerrero-Ulloa, G.; Hornos, M.J.; Rodríguez-Domínguez, C. TDDM4IoTS: A Test-Driven Development Methodology for Internet of Things (IoT)-Based Systems. Commun. Comput. Inf. Sci. 2020, 1193, 41–55. [Google Scholar] [CrossRef]
- Sulistyo, S. Software Development Methods in the Internet of Things. In Information and Communication Technology. ICT-EurAsia 2013. Lecture Notes in Computer Science; Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E.Y.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7804, pp. 50–59. [Google Scholar] [CrossRef] [Green Version]
- Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 223–236. [Google Scholar] [CrossRef]
- Bouanaka, C.; Benlahrache, N.; Benhamaid, S.; Bouhamed, E. A Review of IoT Systems Engineering: Application to the Smart Traffic Lights System. In Proceedings of the 4th International Conference on Advanced Aspects of Software Engineering, ICAASE 2020, Constantine, Algeria, 28–30 November 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Pressman, R.S.; Maxim, B. Software Engineering: A Practitioner’s Approach, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2015; ISBN 9781259253157. [Google Scholar]
- Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; et al. Manifesto for Agile Software Development. Available online: http://agilemanifesto.org/ (accessed on 1 October 2019).
- Fowler, M.; Highsmith, J. The Agile Manifesto. Softw. Dev. 2001, 9, 28–35. [Google Scholar]
- Hazzan, O.; Dubinsky, Y. The Agile Manifesto. In SpringerBriefs in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–14. [Google Scholar] [CrossRef]
- Hijazi, H.; Khdour, T.; Alarabeyyat, A. A Review of Risk Management in Different Software Development Methodologies. Int. J. Comput. Appl. Technol. 2012, 45, 8–12. [Google Scholar] [CrossRef]
- Jones, T.S.; Richey, R.C. Rapid Prototyping Methodology in Action: A Developmental Study. Educ. Technol. Res. Dev. 2000, 48, 63–80. [Google Scholar] [CrossRef]
- Pierre de Oliveira, R.; Grande, C.; Tiago Massoni, B.; Narallynne Maciel de Araújo, B.; Freitas Sarmento, C.; Silva dos Santos, F.; Massoni, T.; Maciel de Araújo, N. Ants Doing Legwork: Investigating Motivators for Software Development Career Abandonment. In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery: Joinville, Brazil, 2021; pp. 353–362. [Google Scholar]
- Matsubara, P.G.F.; Steinmacher, I.; Gadelha, B.; Conte, T.U. Buying Time in Software Development: How Estimates Become Commitments? In Proceedings of the IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2021, Madrid, Spain, 20–21 May 2021; IEEE: New York, NY, USA, 2021; pp. 61–70. [Google Scholar] [CrossRef]
- Ravaglia, C.C.; Mexas, M.P.; Dias, A.C.; da Silveira Batista, H.M.; da Silva Nunes, K. Management of Software Development Projects in Brazil Using Agile Methods. Indep. J. Manag. Prod. 2021, 12, 1357–1374. [Google Scholar] [CrossRef]
- Narang, P.; Mittal, P. Performance Assessment of Traditional Software Development Methodologies and DevOps Automation Culture. Eng. Technol. Appl. Sci. Res. 2022, 12, 9726–9731. [Google Scholar] [CrossRef]
- Beerbaum, D.O. Applying Agile Methodology to Regulatory Compliance Projects in the Financial Industry: A Case Study Research. J. Appl. Res. Dig. Econ. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Thesing, T.; Feldmann, C.; Burchardt, M. Agile versus Waterfall Project Management: Decision Model for Selecting the Appropriate Approach to a Project. Procedia Comput. Sci. 2021, 181, 746–756. [Google Scholar] [CrossRef]
- Soares, D.; da Silva, F.J.; Ramos, S.C.F.; Kirytopoulos, K.; Sá, J.C.; Ferreira, L.P. Identifying Barriers in the Implementation of Agile Methodologies in Automotive Industry. Sustainability 2022, 14, 5453. [Google Scholar] [CrossRef]
- Younus, A.M.; Younis, H. Conceptual Framework of Agile Project Management, Affecting Project Performance, Key: Requirements and Challenges. Int. J. Innov. Res. Eng. Manag. 2021, 8, 10–14. [Google Scholar] [CrossRef]
- Gea, T.; Paradells, J.; Lamarca, M.; Roldan, D. Smart Cities as an Application of Internet of Things: Experiences and Lessons Learnt in Barcelona. In Proceedings of the 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2013, Taichung, Taiwan, 3–5 July 2013; IEEE: Taichung, Taiwan, 2013; pp. 552–557. [Google Scholar] [CrossRef]
- Yelamarthi, K.; Aman, M.S.; Abdelgawad, A. An Application-Driven Modular IoT Architecture. Wirel. Commun. Mob. Comput. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nugra, H.; Abad, A.; Fuertes, W.; Galarraga, F.; Aules, H.; Villacis, C.; Toulkeridis, T. A Low-Cost IoT Application for the Urban Traffic of Vehicles, Based on Wireless Sensors Using GSM Technology. In Proceedings of the IEEE International Symposium on Distributed Simulation and Real-Time Applications, DS-RT, London, UK, 21–23 September 2016; IEEE: Uxbridge, UK, 2016; pp. 161–169. [Google Scholar] [CrossRef]
- Fuertes, W.; Carrera, D.; Villacis, C.; Toulkeridis, T.; Galarraga, F.; Torres, E.; Aules, H. Distributed System as Internet of Things for a New Low-Cost, Air Pollution Wireless Monitoring on Real Time. In Proceedings of the 2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2015, Chengdu, China, 14–16 October 2015; pp. 58–67. [Google Scholar] [CrossRef]
- Peterson, B.; Vogel, B. Prototyping the Internet of Things with Web Technologies: Is It Easy? In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, Athens, Greece, 19–23 March 2018; IEEE: Athens, Greece, 2018; pp. 518–522. [Google Scholar] [CrossRef]
- Guerra Terán, P.; Plua, R.K. Home Automation Application for the Monitoring and Control of an Electric Water Heater Using AWS Technology. In Proceedings of the IEEE 38th Central America and Panama Convention, CONCAPAN 2018, San Salvador, El Salvador, 7–9 November 2018; IEEE: San Salvador, El Salvador, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- ISO/IEC/IEEE 15289:2019; Systems and Software Engineering-Content of Life-Cycle Information Items (Documentation)-IEEE Standard. International Organization for Standardization: Geneva, Switzerland, 2019; Volume 2019, pp. 1–94. [CrossRef]
- Laporte, C.Y.; Vargas, E.P. The Development of International Standards to Facilitate Process Improvements for Very Small Entities. 2014, pp. 1335–1361. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4301-7.ch065 (accessed on 29 December 2022).
- Bourque, P.; Fairley, R.E. Guide to the Software Engineering Body of Knowledge (SWEBOK(R)), 3rd ed.; IEEE Computer Society Press: Washington, DC, USA, 2014; ISBN 978-0-7695-5166-1. [Google Scholar]
- Skordalakis, E. Software Engineering Teaching At NTUA. WIT Trans. Inf. Commun. Technol. 1970, 7, 472. [Google Scholar] [CrossRef]
- Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ghanza, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards Multi-Layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and Interoperability of IoT Systems; Springer: Cham, Switzerland, 2018; pp. 199–232. [Google Scholar] [CrossRef]
- Lawal, A.; Chukwu Ogbu, R. A Comparative Analysis of Agile and Waterfall Software Development Methodologies. Bakolori J. Gen. Stud. 2021, 11, 1–2. [Google Scholar]
- ISO/IEC/IEEE 15288; Systems and Software Engineering-System Life Cycle Processes. International Organization for Standardization: Geneva, Switzerland, 2015; Volume 17, pp. 1–108. [CrossRef]
- ISO/IEC/IEEE 24765:2017; ISO/IEC/IEEE International Standard-Systems and Software Engineering–Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–541. [CrossRef]
- Guide to the Systems Engineering Body of Knowledge (SEBoK). Available online: https://www.sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK) (accessed on 7 November 2022).
- Project Management Institute. Software Extension to the PMBoK Guide, 5th ed.; Project Management Institute: Newtown Square, PA, USA, 2013; ISBN 9781628250138. [Google Scholar]
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 7th ed.; Project Management Institute: Newtown Square, PA, USA, 2021; ISBN 9781628256659. [Google Scholar]
- 12207-2017-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Software Life Cycle Processes. IEEE Standards Association: Piscataway, NJ, USA, 2017; pp. 1–148. [CrossRef]
- Barker, T.T. Documentation for Software and IS Development. In Encyclopedia of Information Systems; Academic Press: Cambridge, MA, USA, 2003; pp. 683–693. [Google Scholar] [CrossRef]
- Wikipedia. Software Development Process. Available online: https://en.wikipedia.org/wiki/Software_development_process (accessed on 4 October 2022).
- Badawi, H.F.; Laamarti, F.; el Saddik, A. ISO/IEEE 11073 Personal Health Device (X73-PHD) Standards Compliant Systems: A Systematic Literature Review. IEEE Access 2019, 7, 3062–3073. [Google Scholar] [CrossRef]
- Alberternst, S.; Anisimov, A.; Antakli, A.; Duppe, B.; Hoffmann, H.; Meiser, M.; Muaz, M.; Spieldenner, D.; Zinnikus, I. Orchestrating Heterogeneous Devices and AI Services as Virtual Sensors for Secure Cloud-Based IoT Applications. Sensors 2021, 21, 7509. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Nedoma, J.; Martinek, R.; Zmij, P. Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks. Sensors 2022, 22, 5937. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Cassou, D. Enabling High-Level Application Development for the Internet of Things. J. Syst. Softw. 2015, 103, 62–84. [Google Scholar] [CrossRef]
- Tabor, L.P. The EDVAC, an Electronic Digital Computer. Astron. J. 1948, 53, 205. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, R. Program Design, Coding, and Testing. Encycl. Inf. Syst. 2003, 529–543. [Google Scholar] [CrossRef]
- Yourdon, E. Modern Structured Analysis, 1st ed.; Yourdon Press: Ann Arbor, MI, USA, 1989; ISBN 9780135986240. [Google Scholar]
- Arpita, G.; Netra, P. Magnifying Object-Oriented Analysis and Design; PHI Learning: New Delhi, India, 2014; ISBN 9788120340688. [Google Scholar]
- Sharma, S.; Hasteer, N.; Mishra, S.P.; van Belle, J.P. Identifying the Contextual Relationship among the Agile Adoption Factors through Interpretive Structural Modeling. In Proceedings of the International Conference on Information Technology, InCITe 2016, Noida, India, 6–7 October 2016; Institute of Electrical and Electronics Engineers Inc.: Noida, India, 2017; pp. 87–92. [Google Scholar] [CrossRef]
- Medina Otalvaro, C.M.; Blandon Andrade, J.C.; Zapata Jaramillo, C.M.; RiosPatino, J.I. IoT Best Practices and Their Components: A Systematic Literature Review. IEEE Latin Am. Trans. 2022, 20, 2217–2228. [Google Scholar] [CrossRef]
- Erazo, O.; Guerrero-Ulloa, G.; Guzmán, D.; Cáceres, C. From a Common Chair to a Device That Issues Reminders to Seniors. Commun. Comput. Inf. Sci. 2020, 1194, 439–448. [Google Scholar] [CrossRef]
- Gogineni, S.K.; Riedelsheimer, T.; Stark, R. Systematic Product Development Methodology for Customizable IoT Devices. In Proceedings of the Procedia CIRP, Póvoa de Varzim, Portgal, 8–10 May 2019; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 84, pp. 393–399. [Google Scholar] [CrossRef]
- 24748-1-2018-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Life Cycle Management—Part 1: Guidelines for Life Cycle Management. IEEE Standards Association: Piscataway, NJ, USA, 2018; pp. 1–75. [CrossRef]
- 24748-3-2020-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Life Cycle Management—Part 3: Guidelines for the Application of ISO/IEC/IEEE 12207 (Software Life Cycle Processes). IEEE Standards Association: Piscataway, NJ, USA, 2020; pp. 1–69. [CrossRef]
- 24748-4-2016-ISO/IEC/IEEE; International Standard for Systems and Software Engineering—Life Cycle Management—Part 4: Systems Engineering Planning. IEEE Standards Association: Piscataway, NJ, USA, 2016; pp. 1–75. [CrossRef]
- Preston, M. 7 Phases of the System Development Life Cycle Guide. Available online: https://www.clouddefense.ai/blog/system-development-life-cycle (accessed on 4 October 2022).
- Stetsuyk, E.; Maevsky, D.; Maevskaya, E. Methodology of Green Software Development for the IoT Devices. Int. J. Inf. Technol. Secur. 2018, 10, 3–12. [Google Scholar]
- Zelfia, H.; Simanungkalit, T.; Raharjo, T. Comparison of Scrum Maturity between Internal and External Software Development: A Case Study at One of the State-Owned Banks in Indonesia. In Proceedings of the 1st International Conference on Information System and Information Technology, ICISIT 2022, Yogyakarta, Indonesia, 26–27 July 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; pp. 312–317. [Google Scholar] [CrossRef]
- Teslyuk, V.; Batyuk, A.; Voityshyn, V. Method of Software Development Project Duration Estimation for Scrum Teams with Differentiated Specializations. Systems 2022, 10, 123. [Google Scholar] [CrossRef]
- Pico-Valencia, P.; Holgado-Terriza, J.A.; Paderewski, P. A Systematic Method for Building Internet of Agents Applications Based on the Linked Open Data Approach. Future Gener. Comput. Syst. 2019, 94, 250–271. [Google Scholar] [CrossRef]
- Rising, L.; Janoff, N.S. Scrum Software Development Process for Small Teams. IEEE Softw. 2000, 17, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Muntés-Mulero, V.; Ripolles, O.; Gupta, S.; Dominiak, J.; Willeke, E.; Matthews, P.; Somosköi, B. Agile Risk Management for Multi-Cloud Software Development. IET Softw. 2019, 13, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Renanti, M.D.; Darmawan, A.C. Application of The Multiple Intelligent Level Determination for Interest and Talent Development. E3S Web Conf. 2022, 348, 00016. [Google Scholar] [CrossRef]
- Pecchia, C.; Trincardi, M.; di Bello, P. Expressing, Managing, and Validating User Stories: Experiences from the Market. Commun. Comput. Inf. Sci. 2016, 422, 103–111. [Google Scholar] [CrossRef]
- 26515-2018-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Developing Information for Users in an Agile Environment. IEEE Standards Association: Piscataway, NJ, USA, 2018. [CrossRef]
- Scrum.org. Scrum Master Trends 2019; Scrum.org.: Burlington, VT, USA; Berlin, Germany, 2019. [Google Scholar]
- Dalpiaz, F.; van der Schalk, I.; Brinkkemper, S.; Aydemir, F.B.; Lucassen, G. Detecting Terminological Ambiguity in User Stories: Tool and Experimentation. Inf. Softw. Technol. 2019, 110, 3–16. [Google Scholar] [CrossRef]
- Usländer, T.; Batz, T. Agile Service Engineering in the Industrial Internet of Things. Future Internet 2018, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Xu, D.; Jiang, L.; Gu, C.; Tan, R.; Cheng, P. Challenges of Privacy-Preserving Machine Learning in IoT. In Proceedings of the International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, AIChallengeIoT 2019, New York, NY, USA, 10 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Boban, M. Security Challenges of the Internet of Things. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2016, Opatija, Croatia, 30 May–3 June 2016; pp. 638–643. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Chung, M.-Y.; Chen, L.-H.; Wei, M.-Y. Applying an Integrated System of Cloud Management and Wireless Sensing Network to Green Smart Environments-Green Energy Monitoring on Campus. Sensors 2022, 22, 6521. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Gadekallu, T.R.; Kaluri, R.; Srivastava, G.; Parizi, R.M.; Khan, M.S. Green Communication in IoT Networks Using a Hybrid Optimization Algorithm. Comput. Commun. 2020, 159, 97–107. [Google Scholar] [CrossRef]
- Ren, H.; Li, H.; Dai, Y.; Yang, K.; Lin, X. Querying in Internet of Things with Privacy Preserving: Challenges, Solutions and Opportunities. IEEE Netw. 2018, 32, 144–151. [Google Scholar] [CrossRef]
- Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A Survey on the Security of IoT Frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27. [Google Scholar] [CrossRef] [Green Version]
- Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C.; Li, C.; Wang, Y.; Li, G.; Wu, W.; Zhang, Y.T. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks. Sensors 2015, 15, 15067–15089. [Google Scholar] [CrossRef] [Green Version]
- Pirbhulal, S.; Zhang, H.; Alahi, M.E.E.; Ghayvat, H.; Mukhopadhyay, S.C.; Zhang, Y.T.; Wu, W. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network. Sensors 2016, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Babaie, M.; Kuo, F.W.; Chen, H.N.R.; Cho, L.C.; Jou, C.P.; Hsueh, F.L.; Shahmohammadi, M.; Staszewski, R.B. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 Nm CMOS With 36% System Efficiency at 3 DBm. IEEE J. Solid-State Circuits 2016, 51, 1547–1565. [Google Scholar] [CrossRef] [Green Version]
- Pullini, A.; Rossi, D.; Loi, I.; Tagliavini, G.; Benini, L. Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing. IEEE J. Solid-State Circuits 2019, 54, 1970–1981. [Google Scholar] [CrossRef] [Green Version]
- Koteshwara, S.; Parhi, K.K. Incremental-Precision Based Feature Computation and Multi-Level Classification for Low-Energy Internet-of-Things. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 822–835. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, Q.; Yang, Y.; Hou, C.; Liu, H.; He, Y. Joint Motion Classification and Person Identification via Multitask Learning for Smart Homes. IEEE Internet Things J. 2019, 6, 9596–9605. [Google Scholar] [CrossRef]
- Yu, Z.; Du, H.; Xiao, D.; Wang, Z.; Han, Q.; Guo, B. Recognition of Human Computer Operations Based on Keystroke Sensing by Smartphone Microphone. IEEE Internet Things J. 2018, 5, 1156–1168. [Google Scholar] [CrossRef]
- Sachdeva, V.; Chung, L. Handling Non-Functional Requirements for Big Data and IOT Projects in SCRUM. In Proceedings of the 7th International Conference Confluence 2017 on Cloud Computing, Data Science and Engineering, Noida, India, 12–13 January 2017; IEEE: Noida, India, 2017; pp. 216–221. [Google Scholar] [CrossRef]
- Keshta, N.; Morgan, Y. Comparison between Traditional Plan-Based and Agile Software Processes According to Team Size & Project Domain (A Systematic Literature Review). In Proceedings of the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2017, Vancouver, BC, Canada, 3–5 October 2017; Institute of Electrical and Electronics Engineers Inc.: Vancouver, BC, Canada, 2017; pp. 567–575. [Google Scholar] [CrossRef]
- Alqudah, M.; Razali, R. A Comparison of Scrum and Kanban for Identifying Their Selection Factors. In Proceedings of the 6th International Conference on Electrical Engineering and Informatics: Sustainable Society through Digital Innovation, ICEEI 2017, Langkawi Island, Malaysia, 25–27 November 2017; Institute of Electrical and Electronics Engineers Inc.: Vancouver, BC, Canada, 2018; Volume 2017, pp. 1–6. [Google Scholar] [CrossRef]
- Kettunen, P.; Laanti, M. Future Software Organizations–Agile Goals and Roles. Eur. J. Futures Res. 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Morais dos Santos, M.V.; Barbosa da Silva, P.D.; Lamas Otero, A.G.; Wisnieski, R.T.; Sousa Goncalves, G.; Esteves Maria, R.; Vieira Dias, L.A.; Marques da Cunha, A. Applying Scrum in an Interdisciplinary Project for Fraud Detection in Credit Card Transactions. Adv. Intell. Syst. Comput. 2016, 448, 461–471. [Google Scholar] [CrossRef]
- Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Li, Y.; Yu, J.; Shi, W. A Survey on Digital Forensics in Internet of Things. IEEE Internet Things J. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D.; Mata-Torres, J.A.; Lopez-Garza, E. A Methodology Based on Model-Driven Engineering for IoT Application Development. In ICDS 2018; Berntzen, L., Hartog, M., Eds.; IARIA: Rome, Italy, 2018; pp. 36–41. ISBN 978-1-61208-615-6. [Google Scholar]
- Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D. An Approach Based on Model-Driven Development for IoT Applications. In Proceedings of the IEEE International Congress on Internet of Things, ICIOT 2018, San Francisco, CA, USA, 2–7 July 2018; IEEE: New York, NY, USA, 2018; pp. 134–139. [Google Scholar] [CrossRef]
- Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D. Methodology for the Model-Driven Development of Service Oriented IoT Applications. J. Syst. Archit. 2018, 90, 15–22. [Google Scholar] [CrossRef]
- OpenMBEE. Open Model Based Engineering Environment. Available online: https://www.openmbee.org/index.html (accessed on 21 October 2022).
- Cabot, J. Clarifying Concepts: MBE vs MDE vs MDD vs MDA. Available online: https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/ (accessed on 20 August 2022).
- Object Management Group. MDA Specifications. Available online: http://www.omg.org/mda/specs.htm (accessed on 20 August 2022).
- Ameller, D. Considering Non-Functional Requirements in Model-Driven Engineering. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2009. [Google Scholar]
- Object Management Group. Model Driven Architecture (MDA). Available online: https://www.omg.org/mda/ (accessed on 17 August 2022).
- Belaunde, M.; Burt, C.; Casanave, C.; Cummins, F.; DSouza, D.; Duddy, K.; el Kaim, W.; Kenne-dy, A.; Frank, W.; Frankel, D.; et al. Model Driven Architecture (MDA) 2003; 62p. Available online: http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed on 17 August 2022).
- Schmidt, D.C. Model-Driven Engineering. Computer 2006, 39, 25–31. [Google Scholar] [CrossRef]
- Ashton, K. That “Internet of Things” Thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Praveen, S.V.; Ittamalla, R.; Deepak, G. Analyzing Indian General Public’s Perspective on Anxiety, Stress and Trauma during COVID-19—A Machine Learning Study of 840,000 Tweets. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Sharma, R. Studying Leaders & Their Concerns Using Online Social Media during the Times of Crisis—A COVID Case Study. Soc. Netw. Anal. Min. 2021, 11, 46. [Google Scholar] [CrossRef]
- Fong, S.L.; Wui Yung, D.C.; Ahmed, F.Y.H.; Jamal, A. Smart City Bus Application with Quick Response (QR) Code Payment. In Proceedings of the 2019 8th International Conference on Software and Computer Applications 2019, Penang, Malaysia, 19–21 February 2019; Volume F1479, pp. 248–252. [Google Scholar] [CrossRef]
- Paasivaara, M.; Vanhanen, J.; Lassenius, C. Collaborating with Industrial Customers in a Capstone Project Course: The Customers’ Perspective. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering Education and Training, ICSE-SEET 2019, Montreal, QC, Canada, 25–31 May 2019; IEEE: Montreal, QC, Canada, 2019; pp. 12–22. [Google Scholar] [CrossRef]
- Enciso, L.; Sarango, J.; Valladarez, A.; Condolo, J. A Mobile Application for a Smart Car. In Proceedings of the Iberian Conference on Information Systems and Technologies, CISTI 2019, Coimbra, Portugal, 19–22 June 2019; IEEE: Coimbra, Portugal, 2019; Volume 2019, pp. 1–7. [Google Scholar] [CrossRef]
- Cahill, J.; Portales, R.; McLoughin, S.; Nagan, N.; Henrichs, B.; Wetherall, S. IoT/Sensor-Based Infrastructures Promoting a Sense of Home, Independent Living, Comfort and Wellness. Sensors 2019, 19, 485. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Ruiz, J.G.; Galvan-Tejada, C.E.; Vazquez-Reyes, S.; Galvan-Tejada, J.I.; Gutiérrez-Gnecchi, J.A. Cardiopulmonary Simulator Using an Internet of Things Approach. In Proceedings of the 6th International Conference in Software Engineering Research and Innovation, CONISOFT 2018, San Luis Potosi, Mexico, 24–26 October 2018; IEEE: San Luis Potosí, Mexico, 2019; pp. 123–131. [Google Scholar] [CrossRef]
- da Silva, D.A.; de Barros Santana, R.M.; Navas, J.; Goncalves, G.S.; Vieira Dias, L.A.; da Cunha, A.M.; Tasinaffo, P.M. Health Care Transformation: An Academic Application System Case Study. IFAC-PapersOnLine 2018, 51, 413–418. [Google Scholar] [CrossRef]
- Ibba, S.; Pinna, A.; Seu, M.; Pani, F.E. CitySense: Blockchain-Oriented Smart Cities. In Proceedings of the XP2017 Scientific Workshops 2017, Cologne, Germany, 22–26 May 2017; Volume F1299, pp. 1–5. [Google Scholar] [CrossRef]
- Fahrianto, F.; Anggraini, N.; Suseno, H.B.; Shabrina, A.; Reza, A. Smart Data Centre Monitoring System Based on Internet of Things (IoT) (Study Case: Pustipanda UIN Jakarta). In Proceedings of the 5th International Conference on Cyber and IT Service Management, CITSM 2017, Denpasar, Indonesia, 8–10 August 2017; IEEE: Denpasar, Indonesia, 2017; pp. 1–9. [Google Scholar]
- Müller, R.; Vette, M.; Hörauf, L.; Speicher, C.; Burkhard, D. Lean Information and Communication Tool to Connect Shop and Top Floor in Small and Medium-Sized Enterprises. Procedia Manuf. 2017, 11, 1043–1052. [Google Scholar] [CrossRef]
- Rizqyawan, M.I.; Amri, M.F.; Pratama, R.P.; Turnip, A. Design and Development of Android-Based Cloud ECG Monitoring System. In Proceedings of the 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, Semarang, Indonesia, 19–20 October 2016; IEEE: Semarang, Indonesia, 2017; pp. 1–5. [Google Scholar]
- Lima, G.L.B.; Ferreira, G.A.L.; Saotome, O.; da Cunha, A.M.; Dias, L.A.V. Hardware Development: Agile and Co-Design. In Proceedings of the 12th International Conference on Information Technology: New Generations, ITNG 2015, Las Vegas, NV, USA, 13–15 April 2015; IEEE: Las Vegas, NV, USA, 2015; pp. 784–787. [Google Scholar] [CrossRef]
- Esteves María, R.; Rodrigues Junior, L.A.; Guarino De Vasconcelos, L.E.; Mancilha Pinto, A.F.; Tsoucamoto, P.T.; Angelim Silva, H.N.; Lastori, A.; Marques Cunha, D.A.; Vieira Dias, L.A. Applying Scrum in an Interdisciplinary Project Using Big Data, Internet of Things, and Credit Cards. In Proceedings of the 12th International Conference on Information Technology: New Generations, ITNG 2015, Las Vegas, NV, USA, 13–15 April 2015; IEEE: Las Vegas, NV, USA, 2015; pp. 67–72. [Google Scholar] [CrossRef]
- Dafoulas, G.; Samuels-Clarke, J.; Maia, C.C.; Ali, A.A.; Tsiakara, A. Offering Smarter Learning Support through the Use of Biometrics. In Proceedings of the 26th International Conference on Telecommunications, ICT 2019, Hanoi, Vietnam, 8–10 April 2019; IEEE: Hanoi, Vietnam, 2019; pp. 270–274. [Google Scholar] [CrossRef]
- Guan, G.; Dong, W.; Gao, Y.; Bu, J. Towards Rapid and Cost-Effective Prototyping of IoT Platforms. In Proceedings of the International Conference on Network Protocols, ICNP, Singapore, 8–11 November 2016; IEEE: Singapore, 2016; Volume 2016, pp. 1–5. [Google Scholar] [CrossRef]
- Musyoka, F.M.; Thiga, M.M.; Muketha, G.M. A 24-Hour Ambulatory Blood Pressure Monitoring System for Preeclampsia Management in Antenatal Care. Inform. Med. Unlocked 2019, 16, 100199. [Google Scholar] [CrossRef]
- Sharma, S.; Das, S.; Virmani, J.; Sharma, M.; Singh, S.; Das, A. IoT Based Dipstick Type Engine Oil Level and Impurities Monitoring System: A Portable Online Spectrophotometer. In Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages, IoT-SIU 2019, Ghaziabad, India, 18–19 April 2019; IEEE: Ghaziabad, India, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Gray, S.; Clark, F.; Burgess, K.; Metcalfe, T.; Kadijevic, A.; Cater, K.; Bennett, P. Gorilla Game Lab: Exploring Modularity, Tangibility and Playful Engagement in Cognitive Enrichment Design. In Proceedings of the Fifth International Conference on Animal-Computer Interaction 2018, Atlanta, GA, USA, 4–6 December 2018; ACM Press: Atlanta, GA, USA, 2018; pp. 1–13. [Google Scholar] [CrossRef]
- Martillano, D.A.; Chowdhury, A.F.D.; Dellosa, J.C.M.; Murcia, A.A.; Mangoma, R.J.P. Pindots: An Assistive Six-Dot Braille Cell Keying Device on Basic Notation Writing for Visually Impaired Students with IoT Technology. In Proceedings of the 2018 2nd International Conference on Education and E-Learning 2018, Bali, Indonesia, 5–7 November 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 41–47. [Google Scholar]
- Pawar, N.; Bourgeau, T.; Chaouchi, H. PrIoT: Prototyping the Internet of Things. In Proceedings of the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 6–8 August 2018; IEEE: Barcelona, Spain, 2018; pp. 216–223. [Google Scholar] [CrossRef]
- Karvinen, K.; Karvinen, T. IoT Rapid Prototyping Laboratory Setup. Int. J. Eng. Educ. 2018, 34, 263–272. [Google Scholar]
- Moon, S.; Min, M.; Nam, J.; Park, J.; Lee, D.; Kim, D. Drowsy Driving Warning System Based on GS1 Standards with Machine Learning. In Proceedings of the 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, Honolulu, HI, USA, 25–30 June 2017; IEEE: Honolulu, HI, USA, 2017; pp. 289–296. [Google Scholar] [CrossRef]
- Scheible, J.; Engeln, A.; Burmester, M.; Zimmermann, G.; Keber, T.; Schulz, U.; Palm, S.; Funk, M.; Schaumann, U. SMARTKITCHEN Media Enhanced Cooking Environment. In Proceedings of the 6th International Conference on the Internet of Things 2016, Granada, Spain, 22–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2016; pp. 169–170. [Google Scholar] [CrossRef]
- Kruger, C.P.; Abu-Mahfouz, A.M.; Hancke, G.P. Rapid Prototyping of a Wireless Sensor Network Gateway for the Internet of Things Using Off-the-Shelf Components. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; IEEE: Seville, Spain, 2015; Volume 2015, pp. 1926–1931. [Google Scholar] [CrossRef]
- Al-Taee, M.A.; Sungoor, A.H.; Abood, S.N.; Philip, N.Y. Web-of-Things Inspired e-Health Platform for Integrated Diabetes Care Management. In Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2013, Amman, Jordan, 3–5 December 2013; IEEE: Amman, Jordan, 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Taee, M.A.; Al-Nuaimy, W.; Al-Ataby, A.; Muhsin, Z.J.; Abood, S.N. Mobile Health Platform for Diabetes Management Based on the Internet-of-Things. In Proceedings of the Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2015, Amman, Jordan, 3–5 November 2015; IEEE: Amman, Jordan, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, H.J. Rapid Smart Environment Prototyping for Early Conceptual Design. In Proceedings of the Designing Interactive Systems Conference, DIS 2018, Hong Kong, China, 9–13 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 363–366. [Google Scholar] [CrossRef]
- Mora, S.; Gianni, F.; Divitini, M. RapIoT Toolkit: Rapid Prototyping of Collaborative Internet of Things Applications. In Proceedings of the International Conference on Collaboration Technologies and Systems, CTS 2016, Orlando, FL, USA, 31 October–4 November 2016; IEEE: Orlando, FL, USA, 2017; pp. 438–445. [Google Scholar] [CrossRef]
- Gianni, F.; Mora, S.; Divitini, M. RapIoT Toolkit: Rapid Prototyping of Collaborative Internet of Things Applications. Future Gener. Comput. Syst. 2019, 95, 867–879. [Google Scholar] [CrossRef]
- Pereira, A.; Patrício, B.; Fonte, F.; Marques, S.; Reis, C.I.; Maximiano, M. Collecting Information About Air Quality Using Smartphones. Procedia Comput. Sci. 2018, 138, 33–40. [Google Scholar] [CrossRef]
- Escobar, L.; Carvajal, N.; Naranjo, J.; Ibarra, A.; Villacis, C.; Zambrano, M.; Galarraga, F. Design and Implementation of Complex Systems Using Mechatronics and Cyber-Physical Systems Approaches. In Proceedings of the IEEE International Conference on Mechatronics and Automation, ICMA 2017, Takamatsu, Japan, 6–9 August 2017; IEEE: Takamatsu, Japan, 2017; pp. 147–154. [Google Scholar] [CrossRef]
- Yang, L.Q.; Bi, Y.Y. Internet of Things Technology Implementation by Applying SDLC Model: The Intelligent Storage Management System. Appl. Mech. Mater. 2014, 556–562, 5385–5390. [Google Scholar] [CrossRef]
- ITU. Statistics—Individuals Using the Internet. Available online: www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 6 October 2019).
- Lekidis, A.; Stachtiari, E.; Katsaros, P.; Bozga, M.; Georgiadis, C.K. Model-Based Design of IoT Systems with the BIP Component Framework. Softw. Pract. Exp. 2018, 48, 1167–1194. [Google Scholar] [CrossRef]
- Harbouche, A.; Djedi, N.; Erradi, M.; Ben-Othman, J.; Kobbane, A. Model Driven Flexible Design of a Wireless Body Sensor Network for Health Monitoring. Comput. Netw. 2017, 129, 548–571. [Google Scholar] [CrossRef]
- Brambilla, M.; Umuhoza, E.; Acerbis, R. Model-Driven Development of User Interfaces for IoT Systems Via Domain-Specific Components and Patterns. J. Internet Serv. Appl. 2017, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Fortino, G.; Russo, W. ELDAMeth: An Agent-Oriented Methodology for Simulation-Based Prototyping of Distributed Agent Systems. Inf. Softw. Technol. 2012, 54, 608–624. [Google Scholar] [CrossRef]
- Ciccozzi, F.; Spalazzese, R. MDE4IoT: Supporting the Internet of Things with Model-Driven Engineering. Stud. Comput. Intell. 2017, 678, 67–76. [Google Scholar] [CrossRef]
- Gomes, L.; Moutinho, F.; Pereira, F. IOPT-Tools—A Web Based Tool Framework for Embedded Systems Controller Development Using Petri Nets. In Proceedings of the 23rd International Conference on Field Programmable Logic and Applications, FPL 2013, Porto, Portugal, 2–4 September 2013; IEEE: Porto, Portugal, 2013; p. 1. [Google Scholar] [CrossRef]
- Ataíde, A.; Barros, J.P.; Brito, I.S.; Gomes, L. Towards Automatic Code Generation for Distributed Cyber-Physical Systems: A First Prototype for Arduino Boards. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Limassol, Cyprus, 13–15 September 2017; IEEE: Limassol, Cyprus, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Chauhan, S.; Patel, P.; Delicato, F.C.; Chaudhary, S. A Development Framework for Programming Cyber-Physical Systems. In Proceedings of the 2nd International Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS 2016, Austin, TX, USA, 16 May 2016; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 47–53. [Google Scholar] [CrossRef]
- Corredor, I.; Bernardos, A.M.; Iglesias, J.; Casar, J.R. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures. Sensors 2012, 12, 9286–9335. [Google Scholar] [CrossRef] [Green Version]
- Fortino, G.; Garro, A.; Mascillaro, S.; Russo, W. Using Event-Driven Lightweight DSC-Based Agents for MAS Modelling. Int. J. Agent-Oriented Softw. Eng. 2010, 4, 113–140. [Google Scholar] [CrossRef]
- Reichlmayr, T. Working towards the Student Scrum—Developing Agile Android Applications. In Proceedings of the 2011 ASEE Annual Conference & Exposition 2011, Vancouver, BC, Canada, 26–29 June 2011; pp. 22.1712.1–22.1712.12. [Google Scholar] [CrossRef]
- Maylawati, D.S.; Ramdhani, M.A. Logical Framework of Information Technology: Systematization of Software Development Research. Telfor J. 2022, 14, 26–32. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, L.; Guo, W.; Zhao, L.; Yuan, X.; Gu, X.; Tang, W.; Bu, L.; Huang, W. A Design Method for an Intelligent Manufacturing and Service System for Rehabilitation Assistive Devices and Special Groups. Adv. Eng. Inform. 2022, 51, 101504. [Google Scholar] [CrossRef]
- Schauer, P.; Falas, Ł. Adaptation-Enabled Architecture for Internet of Things Systems. Lect. Notes Netw. Syst. 2021, 182, 195–204. [Google Scholar] [CrossRef]
- Cicirelli, F.; Fortino, G.; Guerrieri, A.; Spezzano, G.; Vinci, A. Metamodeling of Smart Environments: From Design to Implementation. Adv. Eng. Inform. 2017, 33, 274–284. [Google Scholar] [CrossRef]
- Varga, P.; Blomstedt, F.; Ferreira, L.L.; Eliasson, J.; Johansson, M.; Delsing, J.; Martínez de Soria, I. Making System of Systems Interoperable – The Core Components of the Arrowhead Framework. J. Netw. Comput. Appl. 2017, 81, 85–95. [Google Scholar] [CrossRef]
- Costa, B.; Pires, P.F.; Delicato, F.C. Modeling IoT Applications with SysML4IoT. In Proceedings of the 42nd Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2016, Limassol, Cyprus, 31 August–2 September 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 157–164. [Google Scholar] [CrossRef]
- Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Towards a Development Methodology for Smart Object-Oriented IoT Systems: A Metamodel Approach. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, Hong Kong, 9–12 October 2015; pp. 1297–1302. [Google Scholar] [CrossRef]
- Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Integration of Agent-Based and Cloud Computing for the Smart Objects-Oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 493–498. [Google Scholar] [CrossRef]
- Bellifemine, F.; Poggi, A.; Rimassa, G. Developing Multi-Agent Systems with a FIPA-Compliant Agent Framework. Softw. Pract. Exp. 2001, 31, 103–128. [Google Scholar] [CrossRef]
- Fortino, G. Agents Meet the IoT: Toward Ecosystems of Networked Smart Objects. IEEE Syst. Man Cybern. Mag. 2016, 2, 43–47. [Google Scholar] [CrossRef]
- Li, B.; Dong, W. Automatic Generation of Iot Device Platforms with Autolink. IEEE Internet Things J. 2021, 8, 5893–5903. [Google Scholar] [CrossRef]
- Dong, W.; Li, B.; Guan, G.; Cheng, Z.; Zhang, J.; Gao, Y. TinyLink: A Holistic System for Rapid Development of IoT Applications. ACM Trans. Sens. Netw. 2020, 17, 2020. [Google Scholar] [CrossRef]
- Cai, H.; Gu, Y.; Vasilakos, A.V.; Xu, B.; Zhou, J. Model-Driven Development Patterns for Mobile Services in Cloud of Things. IEEE Trans. Cloud Comput. 2018, 6, 771–784. [Google Scholar] [CrossRef]
- de Farias, C.M.; Brito, I.C.; Pirmez, L.; Delicato, F.C.; Pires, P.F.; Rodrigues, T.C.; dos Santos, I.L.; Carmo, L.F.R.C.; Batista, T. COMFIT: A Development Environment for the Internet of Things. Future Gener. Comput. Syst. 2017, 75, 128–144. [Google Scholar] [CrossRef]
- Ramesh, R.; Lin, R.; Iannopollo, A.; Sangiovanni-Vincentelli, A.; Hartmann, B.; Dutta, P. Turning Coders into Makers: The Promise of Embedded Design Generation. In Proceedings of the 1st Annual ACM Symposium on Computational Fabrication 2017, Cambridge, MA, USA, 12–13 June 2017. [Google Scholar] [CrossRef]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud Computing and Internet of Things: A Survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Kefalakis, N.; Soldatos, J.; Anagnostopoulos, A.; Dimitropoulos, P. A Visual Paradigm for IoT Solutions Development. In Lecture Notes in Computer Science; Podnar Žarko, I., Pripužić, K., Serrano, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 9001, pp. 26–45. [Google Scholar] [CrossRef]
- Fazio, M.; Celesti, A.; Marquez, F.G.; Glikson, A.; Villari, M. Exploiting the FIWARE Cloud Platform to Develop a Remote Patient Monitoring System. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC) 2015, Larnaca, Cyprus, 6–9 July 2015; Volume 2016, pp. 264–270. [Google Scholar] [CrossRef]
- Vashi, S.; Ram, J.; Modi, J.; Verma, S.; Prakash, C. Internet of Things (IoT): A Vision, Architectural Elements, and Security Issues. In Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, Nadu, India, 10–11 February 2017; IEEE: Palladam, India, 2017; pp. 492–496. [Google Scholar] [CrossRef]
- Qiang, M.; Yu-feng, D.; Ting, X.; Shun-li, W. Research of Visualization Monitoring Technology Based on Internet of Things in Discrete Manufacturing Process. In Proceedings of the 2nd International Symposium on Dependable Computing and Internet of Things (DCIT), Wuhan, China, 16–18 November 2015; IEEE: New York, NY, USA, 2015; pp. 128–133. [Google Scholar] [CrossRef]
- Industry IoT Consortium. The Industrial Internet Reference Architecture. Available online: https://www.iiconsortium.org/IIRA/ (accessed on 23 October 2022).
- Lin, S.W.; Durand, B.; Bleakley, G.; Chigani, A.; Martin, R.; Murphy, B.; Crawford, M. The Industrial Internet of Things Volume G1: Reference Architecture, Version 1.9; IIC Technical White Paper; Lin, S.-W., Simmon, E., Eds.; Industrial Internet Consortium: Boston, MA, USA, 2019. [Google Scholar]
- Faugère, M.; Bourbeau, T.; de Simone, R.; Gérard, S. MARTE: Also an UML Profile for Modeling AADL Applications. In Proceedings of the IEEE International Conference on Engineering of Complex Computer Systems, ICECCS 2007, Auckland, New Zealand, 11–14 July 2007; IEEE: Auckland, New Zealand, 2007; pp. 359–364. [Google Scholar] [CrossRef]
- Carnevali, L.; Ridi, L.; Vicario, E. Putting Preemptive Time Petri Nets to Work in a V-Model SW Life Cycle. IEEE Trans. Softw. Eng. 2011, 37, 826–844. [Google Scholar] [CrossRef]
- Nastic, S.; Truong, H.-L.H.-L.L.; Dustdar, S. SDG-Pro: A Programming Framework for Software-Defined IoT Cloud Gateways. J. Internet Serv. Appl. 2015, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Alvear-Puertas, V.E.; Burbano-Prado, Y.A.; Rosero-Montalvo, P.D.; Tözün, P.; Marcillo, F.; Hernandez, W. Smart and Portable Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador. Sensors 2022, 22, 7015. [Google Scholar] [CrossRef]
ScDB | Search Sentence | Results | Filters | ||
---|---|---|---|---|---|
Type | Language | Title | |||
ACM | Keyword:((IoT OR “Internet of Things”) AND (“develop* method*” OR “design* method*” OR “construct* method*” OR “implement* method” OR “develop* framework” OR “design* framework” OR “construct* framework” OR “implement* framework” OR “develop* tool*” OR “design* tool*” OR “construct* tool*” OR “implement* tool*” OR “develop* guidelines” OR “design* guidelines” OR “construct* guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR “design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle” OR “develop* platform*” OR “design* platform*” OR “construct* platform*” OR “implement* platform*”)) | 3 | 3 | 3 | 3 |
IEEE | (“Index Terms”:IoT OR “Index Terms”:”Internet of Things”) AND (“Index Terms”:”develop* method*” OR “Index Terms”:”design* method*” OR “Index Terms”:”construct* method*” OR “Index Terms”:”implement* method” OR “Index Terms”:”develop* framework” OR “Index Terms”:”design* framework” OR “Index Terms”:”construct* framework” OR “Index Terms”:”implement* framework” OR “Index Terms”:”develop* tool*” OR “Index Terms”:”design* tool*” OR “Index Terms”:”construct* tool*” OR “Index Terms”: “implement* tool*” OR “Index Terms”:”develop* guidelines” OR “Index Terms”:”design* guidelines” OR “Index Terms”:”construct* guidelines” OR “Index Terms”:”implement* guidelines” OR “Index Terms”:”develop* lifecycle” OR “Index Terms”:”design* lifecycle” OR “Index Terms”:”construct* lifecycle” OR “Index Terms”:”implement* lifecycle” OR “Index Terms”:”develop* platform*” OR “Index Terms”:”design* platform*” OR “Index Terms”:”construct* platform*” OR “Index Terms”: “implement* platform*”) | 452 | 429 | 429 | 40 |
WoS | TS=(IoT OR “Internet of Things”) AND TS=(“develop* method*” OR “design* method*” OR “construct* method*” OR “implement* method” OR “develop* framework” OR “design* framework” OR “construct* framework” OR “implement* framework” OR “develop* tool*” OR “design* tool*” OR “construct* tool*” OR “implement* tool*” OR “develop* guidelines” OR “design* guidelines” OR “construct* guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR “design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle” OR “develop* platform*” OR “design* platform*” OR “construct* plat-form*” OR “implement* platform*”) | 3201 | 2475 | 2344 | 83 |
Scopus | KEY ((IoT OR “Internet of Things”) AND (“develop* method*” OR “design* method*” OR “construct* method*” OR “implement* method” OR “develop* framework” OR “design* framework” OR “construct* framework” OR “implement* framework” OR “develop* tool*” OR “design* tool*” OR “construct* tool*” OR “implement* tool*” OR “develop* guidelines” OR “design* guidelines” OR “construct* guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR “design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle” OR “develop* platform*” OR “design* platform*” OR “construct* platform*” OR “implement* platform*”)) | 647 | 646 | 636 | 60 |
Year | Reference | Requirements * | Artifacts for | Approach | Application | ||
---|---|---|---|---|---|---|---|
Modelling Language | Analysis and Modelling | Code Generation | |||||
2018 | Lekidis et al. [168] | ✗ | DSML a | C/C++ | MDE, SOA b | Smart Buildings | |
2017 | MDE4IoT c [172] | ✗ | UML, DSML | ✗ | Java, C/C++ | MDE | Smart Cities |
2017 | IOPT d [174] | ✗ | Petri net | IOPT networks | ANSI C | Petri Net | Smart Car |
2017 | Brambilla et al. [170] | ~ | mobile IFML e | ~ | NS f | Components and patterns | Several domains |
2017 | Harbouche et al. [169] | UML | AD g, SD h | NesC, Java | MDE | Health Care | |
2016 | Chauhan et al. [175] | DL i | Holder | AL j, UIL k | Node.js | MDD | Smart Home |
2012 | ROOD [176] | NDE l | SsML m | SOM n | J2ME o | MDA | Smart Gym |
2012 | ELDAMeth [171] | ~ | ✗ | ELDA p, MMM q | Java | Agents | Mobile Agents |
Year | Name | Bases (Methodology/Approach) | (1) | (2) | (3) | (4) | (5) | (6) | Other |
---|---|---|---|---|---|---|---|---|---|
2022 | RASPSS a [180] | DDD b | ✗ | ✓ | |||||
2021 | Schauer and Falas [181] | AS c | ✗ | ✓ | ✓ | ~ | ~ | ✗ | ✗ |
2020 | TDDM4IoTS d [37] | Agile | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
2019 | Pico-Valencia et al. [94] | Agile (SCRUM) | ± | ✓ | ✓ | ||||
2019 | Gogineni et al. [86] | V Model XT | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | |
2018 | INTER-METH [65] | Iterative waterfall | ~ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ |
2018 | SERVUS [102] | SOA | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
2018 | Sosa-Reyna et al. [123,124,125] | MDD and SOA | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
2017 | SEM e [182] | Metamodel | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | |
2017 | Arrowhead [183] | SOA f | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | |
2016 | IDeA g [184] | MBSE h, OOSEM i | ✗ | ✓ | ✓ | ± | ± | ± | ± |
2015 | Patel and Cassou [78] | Concerns-Oriented | ✓ | ✓ | ✓ | ||||
2015 | Fortino et al. [185] | Metamodel | ~ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
2013 | AMG [38] | Model Transformation | ✗ | ~ | ✓ | ✓ | ✗ | ✗ | ✗ |
Year | Reference Name | Approach | Artifacts | Final Product |
---|---|---|---|---|
2021 | Autolink [189] | Components, Templates, MDD | Code, Device design diagram | IoT device: software and design |
2020 | TinyLink [190] | Components, Templates, MDD | Code, Device design diagram | IoT device: software and design |
2018 | PrIoT [154] | Components | PrIoT-core, PrIoT-API, Prior-Test, Prior-DB, PrIoT-UI | Conceptual framework |
2018 | Cai et al. [191] | MDA, patterns, and ontologies | BPMN, CD, AD | Software |
2017 | COMFIT [192] | MDA | Components | Code in NesC and C languages |
2017 | EDG [193] | Components (APIs), MDD | Code, BD a | IoT device: software and design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Ulloa, G.; Rodríguez-Domínguez, C.; Hornos, M.J. Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. Sensors 2023, 23, 790. https://doi.org/10.3390/s23020790
Guerrero-Ulloa G, Rodríguez-Domínguez C, Hornos MJ. Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. Sensors. 2023; 23(2):790. https://doi.org/10.3390/s23020790
Chicago/Turabian StyleGuerrero-Ulloa, Gleiston, Carlos Rodríguez-Domínguez, and Miguel J. Hornos. 2023. "Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review" Sensors 23, no. 2: 790. https://doi.org/10.3390/s23020790
APA StyleGuerrero-Ulloa, G., Rodríguez-Domínguez, C., & Hornos, M. J. (2023). Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. Sensors, 23(2), 790. https://doi.org/10.3390/s23020790