Raw Beef Patty Analysis Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Beef Patty Production
2.2.1. Ingredient Sourcing
2.2.2. Production
- Formulation 1: Patty 1 (P1)—Fat% and fat content class/claim
- Formulation 2: Patty 2 (P2)—Species adulteration
- Formulation 3: Patty 3 (P3)—Textured vegetable protein adulteration
- Formulation 4: Patty 4 (P4)—Mechanically recovered meat adulteration
2.3. Moisture, Fat and Protein Analysis
2.4. Near-Infrared Hyperspetral Imaging System
2.5. Image Acquisition and Correction
2.6. Hyperspectral Image Analysis
2.6.1. Analysis Software
2.6.2. Image Segmentation (Cleaning) and Extraction of Spectral Data (Mean Spectrum Calculation)
2.6.3. Pre-Processing
2.6.4. Principal Component Analysis
2.6.5. Model Development, Calibration and Validation
2.6.6. Performance Measures
2.6.7. Model Limits (Regulation)
3. Results and Discussion
3.1. Moisture, Fat and Protein Analysis
3.2. Patty Category Determination
3.2.1. Spectral Analysis
3.2.2. Principal Component Analysis
3.2.3. Model Development: Patty Category
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Downey, G.; O’Donnell, C.P. Dispersive Raman Spectroscopy and Multivariate Data Analysis To Detect Offal Adulteration of Thawed Beefburgers. J. Agric. Food Chem. 2015, 63, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Sun, D.-W.; ElMasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Macedo-Silva, A.; Shimokomaki, M.; Vaz, A.; Yamamoto, Y.; Tenuta-Filho, A. Textured Soy Protein Quantification in Commercial Hamburger. J. Food Compos. Anal. 2001, 14, 469–478. [Google Scholar] [CrossRef]
- Flores-Munguia, M.; Bermudez-Almada, M.; Vázquez-Moreno, L. A research note: Detection of adulteration in processed traditional meat products. J. Muscle Foods 2000, 11, 319–325. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.P.; Woodward, B.B.; Ho, S.-H. Detection of Species Substitution in Raw and Cooked Meats Using Immunoassays. J. Food Prot. 1995, 58, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, Y.; Ayaz, N.; Erol, I. Detection of species in meat and meat products using enzyme-linked immunosorbent assay. J. Muscle Foods 2006, 17, 214–220. [Google Scholar] [CrossRef]
- O’Mahony, P.J. Finding horse meat in beef products—A global problem. Qjm Int. J. Med. 2013, 106, 595–597. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.J.; Burns, M.; Burns, D.T. Horse meat in beef products—Species substitution 2013. J. Assoc. Public Anal. 2013, 41, 67–106. [Google Scholar]
- Cawthorn, D.-M.; Steinman, H.A.; Hoffman, L.C. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control 2013, 32, 440–449. [Google Scholar] [CrossRef] [Green Version]
- DALRRD. Regulations regarding the classification, packaging and marking of certain raw processed meat products intended for sale in the republic of South Africa. In Agricultural Product Standards Act; Government Printer: Pretoria, South Africa, 1990. [Google Scholar]
- Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Geladi, P.; Grahn, H.; Burger, J. Multivariate images, hyperspectral imaging: Background and equipment. In Techniques and Applications of Hyperspectral Image Analysis; John Wiley & Sons Ltd.: Southern West Sussex, UK, 2007; pp. 1–15. [Google Scholar]
- Manley, M.; Baeten, V. Spectroscopic Technique: Near Infrared (NIR) Spectroscopy. In Modern Techniques for Food Authentication, 2nd ed.; Sun, D.-W., Ed.; Elsevier: Oxford, UK, 2018; pp. 51–102. [Google Scholar] [CrossRef]
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. TrAC Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Barbin, D.; Elmasry, G.; Sun, D.-W.; Allen, P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Barbin, D.; ElMasry, G.; Sun, D.-W.; Allen, P. Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innov. Food Sci. Emerg. Technol. 2012, 16, 316–325. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; M. Reis, M.; Qi Yan, W.; Klette, R. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images. J. Imaging 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Pu, H.; Sun, D.-W.; Gao, W.; Qu, J.-H.; Ma, K.-Y. Application of Vis–NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles. Int. J. Refrig. 2015, 50, 10–18. [Google Scholar] [CrossRef]
- Pu, H.; Sun, D.-W.; Ma, J.; Cheng, J.-H. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. Meat Sci. 2015, 99, 81–88. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess Technol. 2015, 8, 1054–1062. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Y.; Wei, W.; Peng, Y. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Sci. 2019, 149, 55–62. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, F.; Shi, M. Rapid Identification and Visualization of Jowl Meat Adulteration in Pork Using Hyperspectral Imaging. Foods 2020, 9, 154. [Google Scholar] [CrossRef]
- AOAC. Loss on drying (moisture) at 95–100 °C for feed. AOAC Official Method 934.01. In Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist Inc.: Arlington, VA, USA, 2002. [Google Scholar]
- Lee, C.M.; Trevino, B.; Chaiyawat, M. A Simple and Rapid Solvent ExtractionMethod for Determining Total Lipids in Fish Tissue. J. AOAC Int. 1996, 79, 487–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Protein (Crude) in Animal Feed and Pet Food. AOAC Official Method 992.15. In Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist Inc.: Arlington, VA, USA, 2002. [Google Scholar]
- Sendin, K.; Manley, M.; Marini, F.; Williams, P.J. Hierarchical classification pathway for white maize, defect and foreign material classification using spectral imaging. Microchem. J. 2020, 162, 105824. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Wold, S.; Geladi, P.; Esbensen, K.; Öhman, J. Multi-way principal components-and PLS-analysis. J. Chemom. 1987, 1, 41–56. [Google Scholar] [CrossRef]
- Sebestyen, G. Pattern recognition by an adaptive process of sample set construction. IEEE Trans. Inf. Theory 1962, 8, 82–91. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Sheard, P.; Nute, G.; Chappell, A. The effect of cooking on the chemical composition of meat products with special reference to fat loss. Meat Sci. 1998, 49, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific and Technical: Essex, UK, 1993. [Google Scholar]
- Murray, I. The NIR spectra of homologous series of organic compounds. In Proceedings of the International NIR/NIT Conference, Budapest, Hungary, 12–16 May 1986; Akademiai Kiado: Budapest, Hungary, 1986; pp. 13–28. [Google Scholar]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. Lwt 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Ding, H.B.; Xu, R.J. Near-Infrared Spectroscopic Technique for Detection of Beef Hamburger Adulteration. J. Agric. Food Chem. 2000, 48, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Downey, G.; Beauchêne, D. Authentication of fresh vs. frozen-then-thawed beef by near-infrared reflectance spectroscopy of dried drip juice. LWT-Food Sci. Technol. 1997, 30, 721–726. [Google Scholar] [CrossRef]
- Edwards, K.; Manley, M.; Hoffman, L.C.; Beganovic, A.; Kirchler, C.G.; Huck, C.W.; Williams, P.J. Differentiation of South African Game Meat Using Near-Infrared (NIR) Spectroscopy and Hierarchical Modelling. Molecules 2020, 25, 1845. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.-W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Miller, C.E. Chemometrics in Process Analytical Chemistry. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; Bakeev, K.A., Ed.; Blackwell Publishing Ltd: Oxford, UK, 2005; pp. 226–324. [Google Scholar]
- Mueller, J.P.; Massaron, L. Going a step beyong using Support Vector Machines. In Machine Learning for Dummies; John Wiley & Sons, Inc.: Toronto, ON, Canada, 2016; pp. 297–313. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Tree-Based Methods. In An Introduction to Statistical Learning: With Applications in R; Spinger: New York, NY, USA, 2013; pp. 303–332. [Google Scholar]
- Fix, E.; Hodges, J.L. Discriminatory analysis, nonparametric discrimination: Consistency Properties, USAF School of Aviation Medicine: Randolph Field, TX, USA, 1951.
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Support Vector Machines. In An Introduction to Statistical Learning: With Applications in R; Spinger: New York, NY, USA, 2013; pp. 337–368. [Google Scholar]
- Salazar-Vazquez, J.; Mendez-Vazquez, A. A plug-and-play Hyperspectral Imaging Sensor using low-cost equipment. HardwareX. 2020, 7, e00087. [Google Scholar] [CrossRef]
Ingredients | Treatments (Added Fat %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% Fat | 2.5% Fat | 5% Fat | 7.5% Fat | 10% Fat | 15% Fat | 20% Fat | 25% Fat | 30% Fat | 40% Fat | |
Lean Beef (%) | 100 | 97.5 | 95 | 92.5 | 90 | 85 | 80 | 75 | 70 | 60 |
Beef Fat (%) | 0 | 2.5 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 |
Total (g) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Ingredients | Treatments (Added Species %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
75% Beef (Control) | 18.75% Pork 1 | 7.5% Pork 2 | 33.75% Pork 3 | 18.75% Lamb 1 | 7.5% Lamb 2 | 33.75% Lamb 3 | 18.75% Ostrich 1 | 7.5% Ostrich 2 | 33.75% Ostrich 3 | |
Lean Beef (%) | 65 | 46.25 | 57.5 | 31.25 | 46.25 | 57.5 | 31.25 | 46.25 | 57.5 | 31.25 |
Beef Fat (%) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Spice Pack (%) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Water (%) | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Lean Pork (%) | 0 | 18.75 | 7.5 | 33.75 | 0 | 0 | 0 | 0 | 0 | 0 |
Lean Lamb (%) | 0 | 0 | 0 | 0 | 18.75 | 7.5 | 33.75 | 0 | 0 | 0 |
Lean Ostrich (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.75 | 7.5 | 33.75 |
Total (g) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Ingredients | Treatments (Added Species %) | ||||
---|---|---|---|---|---|
TM 45 | TM 55 | TM 60 | TM 70 | TM 80 | |
Lean Beef (%) | 35 | 45 | 50 | 60 | 70 |
Beef Fat (%) | 10 | 10 | 10 | 10 | 10 |
Spice Pack (%) | 10 | 10 | 10 | 10 | 10 |
Water (%) | 35.5 | 30 | 25.5 | 13.75 | 9 |
Burger Rusk (%) | 5 | 0 | 0 | 0 | 0 |
TVP (%) | 4.5 | 5 | 4.5 | 6.25 | 1 |
Total (g) | 100 | 100 | 100 | 100 | 100 |
TM% | 45 | 55 | 60 | 70 | 80 |
TME% | 55.8 | 67 | 70 | 85 | 82.4 |
Authenticity | Adulterated | Authentic | Authentic | Authentic | Authentic |
Ingredients | Treatments (Added Species %) | ||||
---|---|---|---|---|---|
TM 45 | TM 55 | TM 60 | TM 70 | TM 80 | |
MRM (%) | 50 | 30.2 | 15.8 | 21 | 21 |
Lean Beef (%) | 0 | 10 | 15 | 25 | 30 |
Beef Fat (%) | 0 | 10 | 10 | 10 | 10 |
Spice Pack (%) | 10 | 10 | 10 | 10 | 10 |
Water (%) | 35 | 33.8 | 41.2 | 29 | 24 |
Soya Fibre (%) | 0 | 1 | 1 | 0 | 0 |
Burger Rusk (%) | 0 | 0 | 2 | 0 | 0 |
TVP (%) | 5 | 5 | 5 | 5 | 5 |
Total (g) | 100 | 100 | 100 | 100 | 100 |
TM% | 0 | 20 | 25 | 35 | 40 |
TME% | 55 | 55 | 45 | 63 | 67.3 |
Authenticity | Adulterated | Adulterated | Adulterated | Authentic | Authentic |
Pre-Processing | Model | Classification Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LDA (2 PCs) | KNN (k = 5) | D.Trees | RF (No = 100) | SVM-C (rbf) C: 1000 Ƴ: 0.001 | SVM-C (Linear) C: 10 Ƴ: 1 | SVM-C (Poly) C: 0.1 Ƴ: 0.1 | SVM-C (Sigmoid) C: 10 Ƴ: 0.001 | PLS-DA (7 LVs) | ||
SNV | CAL | 100 | 87 | 100 | 100 | 100 | 100 | 100 | 65 | 87 |
CV | 98 | 77 | 83 | 88 | 98 | 99 | 99 | 65 | 86 | |
VAL | 97 | 76 | 74 | 83 | 97 | 98 | 97 | 57 | 91 | |
LDA (2 PCs) | KNN (k = 3) | D.Trees | RF (No = 100) | SVM-C (rbf) C: 1000 Ƴ: 0.001 | SVM-C (linear) C: 100 Ƴ: 1 | SVM-C (poly) C: 0.1 Ƴ: 0.1 | SVM-C (sigmoid) C: 100 Ƴ: 0.001 | PLS-DA (5 LVs) | ||
SNV+DT | CAL | 100 | 94 | 100 | 100 | 100 | 100 | 100 | 69 | 76 |
CV | 98 | 86 | 82 | 90 | 98 | 99 | 99 | 64 | 56 | |
VAL | 97 | 83 | 76 | 93 | 97 | 98 | 97 | 62 | 81 |
Pre-Processing | Classification Accuracy (%) | FP Error (%) | FN Error (%) | Sensitivity (%) | Specificity (%) | Precision (%) | Misclassification (%) |
---|---|---|---|---|---|---|---|
Linear Discriminant Analysis | |||||||
SNV | 98.7 | 0.6 | 0.6 | 97.6 | 99.2 | 97.5 | 1.3 |
SNV+DT | 98.3 | 0.8 | 0.9 | 96.8 | 98.9 | 96.7 | 1.7 |
Support Vector Machines Classification (rbf) | |||||||
SNV | 98.3 | 0.9 | 0.8 | 96.7 | 98.9 | 96.9 | 1.7 |
SNV+DT | 98.7 | 0.6 | 0.6 | 97.6 | 99.1 | 97.6 | 1.3 |
Support Vector Machines Classification (linear) | |||||||
SNV | 99.2 | 0.4 | 0.3 | 98.3 | 99.4 | 98.5 | 0.8 |
SNV+DT | 99.0 | 0.5 | 0.5 | 98.0 | 99.3 | 98.1 | 1.0 |
Support Vector Machines Classification (polynomial) | |||||||
SNV | 98.6 | 0.8 | 0.8 | 97.1 | 99.0 | 97.4 | 1.4 |
SNV+DT | 98.5 | 0.7 | 0.7 | 97.2 | 99.0 | 97.1 | 1.5 |
Class | Classification Accuracy (%) | FP Error (%) | FN Error (%) | Sensitivity (%) | Specificity (%) | Precision (%) | Misclassification (%) |
---|---|---|---|---|---|---|---|
P1 | 98.3 | 1.1 | 0.6 | 97.7 | 98.6 | 96.2 | 1.7 |
P2 | 98.3 | 0.6 | 1.1 | 95.9 | 99.2 | 97.5 | 1.7 |
P3 | 98.1 | 0.6 | 1.3 | 95.4 | 99.1 | 97.7 | 1.9 |
P4 | 99.4 | 0.6 | 0 | 100 | 99.2 | 97.2 | 0.6 |
Class | Classification Accuracy (%) | FP Error (%) | FN Error (%) | Sensitivity (%) | Specificity (%) | Precision (%) | Misclassification (%) |
---|---|---|---|---|---|---|---|
Support Vector Machines Classification (rbf) | |||||||
P1 | 98.6 | 1.1 | 0.4 | 98.4 | 98.5 | 96.2 | 1.4 |
P2 | 97.1 | 1.1 | 1.9 | 92.5 | 98.6 | 95.7 | 2.9 |
P3 | 98.5 | 0.9 | 0.6 | 97.9 | 98.8 | 97.0 | 1.5 |
P4 | 100 | 0 | 0 | 100 | 100 | 100 | 0 |
Support Vector Machines Classification (linear) | |||||||
P1 | 98.5 | 1.3 | 0.2 | 99.2 | 98.3 | 95.5 | 1.5 |
P2 | 99.0 | 0.4 | 0.6 | 97.5 | 99.4 | 98.3 | 1.0 |
P3 | 99.0 | 0.2 | 0.9 | 97.0 | 99.7 | 99.2 | 1.0 |
P4 | 99.8 | 0 | 0 | 99.0 | 100 | 100 | 0.2 |
Support Vector Machines Classification (polynomial) | |||||||
P1 | 98.1 | 1.1 | 0.9 | 96.9 | 98.6 | 96.1 | 1.9 |
P2 | 98.4 | 0.4 | 1.3 | 95.0 | 99.5 | 98.3 | 1.6 |
P3 | 98.1 | 1.3 | 0.6 | 97.7 | 98.3 | 95.5 | 1.9 |
P4 | 99.6 | 0.2 | 0.2 | 99.0 | 99.8 | 99.0 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, K.; Hoffman, L.C.; Manley, M.; Williams, P.J. Raw Beef Patty Analysis Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories. Sensors 2023, 23, 697. https://doi.org/10.3390/s23020697
Edwards K, Hoffman LC, Manley M, Williams PJ. Raw Beef Patty Analysis Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories. Sensors. 2023; 23(2):697. https://doi.org/10.3390/s23020697
Chicago/Turabian StyleEdwards, Kiah, Louwrens C. Hoffman, Marena Manley, and Paul J. Williams. 2023. "Raw Beef Patty Analysis Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories" Sensors 23, no. 2: 697. https://doi.org/10.3390/s23020697
APA StyleEdwards, K., Hoffman, L. C., Manley, M., & Williams, P. J. (2023). Raw Beef Patty Analysis Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories. Sensors, 23(2), 697. https://doi.org/10.3390/s23020697