ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. Pathological Subjects Dataset
2.1.2. Healthy Subjects Dataset
2.2. Heartbeat Detection and Inter-Beat Intervals Estimation
2.3. Heart Rate Variability Analysis
2.4. Statistical Analyses
3. Results
3.1. Analysis of Healthy Subjects Data
3.2. Analysis of Pathological Subjects Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Patient ID# | |
---|---|
SCG | GCG |
CP01 | CP01 |
CP02 | CP02 |
CP05 | CP05 |
Not Included | CP06 |
CP07 | CP07 |
CP08 | CP08 |
CP13 | CP13 |
CP15 | CP15 |
Not Included | CP17 |
Not Included | CP18 |
CP19 | CP19 |
CP20 | CP20 |
CP21 | CP21 |
CP23 | CP23 |
CP27 | CP27 |
CP28 | CP28 |
CP30 | CP30 |
CP34 | CP34 |
CP36 | CP36 |
Not Included | CP37 |
CP39 | CP39 |
CP41 | CP41 |
CP44 | CP44 |
CP45 | CP45 |
Not Included | CP50 |
Not Included | CP51 |
CP53 | CP53 |
CP57 | CP57 |
CP58 | CP58 |
CP59 | CP59 |
CP60 | CP60 |
CP61 | CP61 |
CP63 | CP63 |
CP65 | CP65 |
CP66 | CP66 |
CP69 | CP69 |
UP01 | Not Included |
UP02 | UP02 |
UP04 | UP04 |
UP07 | UP07 |
UP08 | UP08 |
UP09 | UP09 |
UP11 | UP11 |
UP12 | UP12 |
UP14 | UP14 |
UP15 | UP15 |
UP17 | Not Included |
UP20 | UP20 |
UP26 | UP26 |
UP29 | UP29 |
UP30 | UP30 |
References
- Van Ravenswaaij-Arts, C.M.; Kollée, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Intern. Med. 1993, 118, 436–447. [Google Scholar] [CrossRef]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Malik, M.; Camm, J.A.; Bigger, T.J.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvas. Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Zareba, W. Chapter 31—Heart rate variability. In Handbook of Clinical Neurology; Buijs, R.M., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 379–393. [Google Scholar] [CrossRef]
- Böhm, M.; Reil, J.C.; Deedwania, P.; Kim, J.B.; Borer, J.S. Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. Am. J. Med. 2015, 128, 219–228. [Google Scholar] [CrossRef]
- Turcu, A.-M.; Ilie, A.C.; Ștefăniu, R.; Țăranu, S.M.; Sandu, I.A.; Alexa-Stratulat, T.; Pîslaru, A.I.; Alexa, I.D. The Impact of Heart Rate Variability Monitoring on Preventing Severe Cardiovascular Events. Diagnostics 2023, 13, 2382. [Google Scholar] [CrossRef]
- İşler, Y.; Kuntalp, M. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput. Biol. Med. 2007, 37, 1502–1510. [Google Scholar] [CrossRef]
- Faust, O.; Hong, W.; Loh, H.W.; Xu, S.; Tan, R.S.; Chakraborty, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Heart rate variability for medical decision support systems: A review. Comput. Biol. Med. 2022, 145, 105407. [Google Scholar] [CrossRef]
- Hernando, D.; Roca, S.; Sancho, J.; Alesanco, Á.; Bailón, R. Validation of the AppleWatch for Heart Rate Variability Measurements during Relax and Mental Stress in Healthy Subjects. Sensors 2018, 18, 2619. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, L.; Liu, C. Heart rate variability monitoring for emotion and disorders of emotion. Physiol. Meas. 2019, 40, 064004. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, C.J.; Foreman, N.A.; Biltz, G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int. J. Sports Med. 2023, 44, 9–19. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [Google Scholar] [CrossRef]
- Lu, K.; Sjörs Dahlman, A.; Karlsson, J.; Candefjord, S. Detecting driver fatigue using heart rate variability: A systematic review. Accid. Anal. Prev. 2022, 178, 106830. [Google Scholar] [CrossRef]
- Radha, M.; Fonseca, P.; Moreau, A.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; Aarts, R.M. Sleep stage classification from heart-rate variability using long short-term memory neural networks. Sci. Rep. 2019, 9, 14149. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, X.; Jiao, Z. Multi-Modal Physiological Signals Based Squeeze-and-Excitation Network With Domain Adversarial Learning for Sleep Staging. IEEE Sens. J. 2022, 22, 3464–3471. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Clark, J.W.J. The origin of biopotentials. In Medical Instrumentation: Application and Design, 4th ed.; Webster, J.G., Ed.; JohnWiley & Sons: Hoboken, NJ, USA, 2010; pp. 147–158. [Google Scholar]
- Nazeran, H. Electrocardiography, computers in. In Encyclopedia of Medical Devices and Instrumentation, 2nd ed.; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 34–51. [Google Scholar]
- Vieau, S.; Iaizzo, P.A. Basic ECG theory, 12-lead recordings and their interpretation. In Handbook of Cardiac Anatomy, Physiology and Devices, 3rd ed.; Iaizzo, P.A., Ed.; Springer: Cham, Switzerland, 2015; pp. 321–334. [Google Scholar]
- Berbari, E.J. Principles of electrocardiography. In Biomedical Engineering Handbook; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 231–240. [Google Scholar]
- Sattar, Y.; Chhabra, L. Electrocardiogram; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549803/ (accessed on 7 April 2023).
- Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef]
- Sahroni, A.; Hassya, I.A.; Rifaldi, R.; Jannah, N.U.; Irawan, A.F.; Rahayu, A.W. HRV Assessment Using Finger-tip Photoplethysmography (PulseRate) as Compared to ECG on Healthy Subjects During Different Postures and Fixed Breathing Pattern. Procedia Comput. Sci. 2019, 161, 535–543. [Google Scholar] [CrossRef]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef] [PubMed]
- Alqaraawi, A.; Alwosheel, A.; Alasaad, A. Heart rate variability estimation in photoplethysmography signals using Bayesian learning approach. Healthc. Technol. Lett. 2016, 3, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, P.; Meriggi, P.; Di Rienzo, M.; Lombardi, C.; Parati, G.; Faini, A. Heart Rate Variability from Wearable Photoplethysmography Systems: Implications in Sleep Studies at High Altitude. Sensors 2022, 22, 2891. [Google Scholar] [CrossRef] [PubMed]
- Hoog Antink, C.; Mai, Y.; Peltokangas, M.; Leonhardt, S.; Oksala, N.; Vehkaoja, A. Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients. Sci. Rep. 2021, 11, 8123. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, N.; Jaryal, A.; Santhosh, J.; Deepak, K.K.; Anand, S. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J. Med. Eng. Technol. 2008, 32, 479–484. [Google Scholar] [CrossRef]
- Peng, R.C.; Zhou, X.L.; Lin, W.H.; Zhang, Y.T. Extraction of heart rate variability from smartphone photoplethysmograms. Comput. Math Methods Med. 2015, 2015, 516826. [Google Scholar] [CrossRef]
- Dalmeida, K.M.; Masala, G.L. HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef]
- Chalmers, T.; Hickey, B.A.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors 2022, 22, 151. [Google Scholar] [CrossRef]
- Maritch, M.; Berube, C.; Kraus, M.; Lehmann, V.; Zueger, T. Improving Heart Rate Variability Measurements from consumer smartwatches with machine learning. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 934–938. [Google Scholar] [CrossRef]
- Charlier, P.; Cabon, M.; Herman, C.; Benouna, F.; Logier, R.; Houfflin-Debarge, V.; Jeanne, M.; De Jonckheere, J. Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis. J. Clin. Monit. Comput. 2019, 34, 743–752. [Google Scholar] [CrossRef]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable Devices for Remote Monitoring of Heart Rate and Heart Rate Variability—What We Know and What Is Coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef]
- Galli, A.; Montree, R.J.H.; Que, S.; Peri, E.; Vullings, R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. Sensors 2022, 22, 4035. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Akram, U.; Siddiqi, I. Heart rate tracking in photoplethysmography signals affected by motion artifacts: A review. EURASIP J. Adv. Signal. Process. 2021, 5, 5. [Google Scholar] [CrossRef]
- Rappaport, M.B.; Sprague, H.B. The graphic registration of the normal heart sounds. Am. Heart J. 1942, 23, 591–623. [Google Scholar] [CrossRef]
- Dimond, E.G.; Benchimol, A. Phonocardiography. Calif. Med. 1961, 94, 139–146. [Google Scholar] [PubMed]
- Ismail, S.; Siddiqi, I.; Akram, U. Localization and classification of heart beats in phonocardiography signals—A comprehensive review. EURASIP J. Adv. Signal. Process. 2018, 2018, 26. [Google Scholar] [CrossRef]
- Giordano, N.; Knaflitz, M. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography. Sensors 2019, 19, 1868. [Google Scholar] [CrossRef]
- Gordon, J.W. On certain molar movements of the human body produced by the circulation of blood. J. Anat. Physiol. 1877, 11, 533–536. [Google Scholar]
- Knoop, A.A. Experimental investigations on ultra-low frequency displacement ballistocardiography: NASA TT F-269. In NASA Contractor Report—NASA CR; National Aeronautics and Space Administration: Washington, DC, USA, 1965; pp. 1–107. [Google Scholar]
- Starr, I. The relation of the ballistocardiogram to cardiac function. Am. J. Cardiol. 1958, 2, 737–747. [Google Scholar] [CrossRef]
- Burger, H.C.; Noordergraaf, A. Physical basis of ballistocardiography. III. Am. Heart J. 1956, 51, 179–185. [Google Scholar] [CrossRef]
- Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [Google Scholar] [CrossRef]
- Inan, O.T. Recent advances in cardiovascular monitoring using ballistocardiography. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5038–5041. [Google Scholar] [CrossRef]
- Zanetti, J.; Salerno, D. Seismocardiography: A new technique for recording cardiac vibrations: Concept, method, and initial observations. J. Cardiovasc. Technol. 1990, 9, 2. [Google Scholar]
- Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A.; Solar, B.E.; Bomar, A.J.; Sandler, R.H.; Mansy, H.A. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, J.M.; Tavakolian, K. Seismocardiography: Past, present and future. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7004–7007. [Google Scholar] [CrossRef]
- Crow, R.S.; Hannan, P.; Jacobs, D.; Hedquist, L.; Salerno, D.M. Relationship between Seismocardiogram and Echocardiogram for Events in the Cardiac Cycle. Am. J. Noninvas. Cardiol. 1994, 8, 39–46. [Google Scholar] [CrossRef]
- Khosrow-Khavar, F.; Tavakolian, K.; Blaber, A.; Menon, C. Automatic and Robust Delineation of the Fiducial Points of the Seismocardiogram Signal for Noninvasive Estimation of Cardiac Time Intervals. IEEE Trans. Biomed. Eng. 2017, 64, 1701–1710. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Vaini, E.; Castiglioni, P.; Merati, G.; Meriggi, P.; Parati, G.; Faini, A.; Rizzo, F. Wearable seismocardiography: Towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Auton. Neurosci. 2013, 178, 50–59. [Google Scholar] [CrossRef]
- Laurin, A.; Blaber, A.; Tavakolian, K. Seismocardiograms return valid heart rate variability indices. Comput. Cardiol. 2013, 2013, 413–416. [Google Scholar]
- Jafari Tadi, M.; Lehtonen, E.; Pankaala, M.; Saraste, A.; Vasankari, T.; Teras, M.; Koivisto, T. Gyrocardiography: A new non-invasive approach in the study of mechanical motions of the heart. Concept, method and initial observations. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 2034–2037. [Google Scholar] [CrossRef]
- Jafari Tadi, M.; Lehtonen, E.; Saraste, A.; Tuominen, J.; Koskinen, J.; Teräs, M.; Airaksinen, J.; Pänkäälä, M.; Koivisto, T. Gyrocardiography: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic Variables. Sci. Rep. 2017, 7, 6823. [Google Scholar] [CrossRef]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Gyrocardiography: A Review of the Definition, History, Waveform Description and Applications. Sensors 2020, 20, 6675. [Google Scholar] [CrossRef]
- Dehkordi, P.; Tavakolian, K.; Tadi, M.J.; Zakeri, V.; Khosrow-Khavar, F. Investigating the estimation of cardiac time intervals using gyrocardiography. Physiol. Meas. 2020, 41, 055004. [Google Scholar] [CrossRef]
- Hossein, A.; Mirica, D.C.; Rabineau, J.; Del Rio, J.I.J.; Morra, S.; Gorlier, D.; Nonclercq, A.; van de Borne, P.; Migeotte, P.F. Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci. Rep. 2019, 9, 10479. [Google Scholar] [CrossRef] [PubMed]
- Hossein, A.; Rabineau, J.; Gorlier, D.; Del Rio, J.I.J.; van de Borne, P.; Migeotte, P.F.; Nonclercq, A. Kinocardiography Derived from Ballistocardiography and Seismocardiography Shows High Repeatability in Healthy Subjects. Sensors 2021, 21, 815. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Fratini, A.; Esposito, D.; Naik, G.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall. Sensors 2020, 20, 3885. [Google Scholar] [CrossRef]
- Andreozzi, E.; Gargiulo, G.D.; Esposito, D.; Bifulco, P. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Front. Physiol. 2021, 12, 725716. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Centracchio, J.; Punzo, V.; Esposito, D.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Respiration Monitoring via Forcecardiography Sensors. Sensors 2021, 21, 3996. [Google Scholar] [CrossRef]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D.; Bifulco, P. Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Forcecardiography Recordings. Bioengineering 2022, 9, 89. [Google Scholar] [CrossRef]
- Andreozzi, E.; Centracchio, J.; Esposito, D.; Bifulco, P. A Comparison of Heart Pulsations Provided by Forcecardiography and Double Integration of Seismocardiogram. Bioengineering 2022, 9, 167. [Google Scholar] [CrossRef]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D. Respiratory-Induced Amplitude Modulation of Forcecardiography Signals. Bioengineering 2022, 9, 444. [Google Scholar] [CrossRef]
- Centracchio, J.; Esposito, D.; Gargiulo, G.D.; Andreozzi, E. Changes in Forcecardiography Heartbeat Morphology Induced by Cardio-Respiratory Interactions. Sensors 2022, 22, 9339. [Google Scholar] [CrossRef]
- Andreozzi, E.; Sabbadini, R.; Centracchio, J.; Bifulco, P.; Irace, A.; Breglio, G.; Riccio, M. Multimodal Finger PulseWave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors 2022, 22, 7566. [Google Scholar] [CrossRef]
- D’Mello, Y.; Skoric, J.; Xu, S.; Roche, P.J.R.; Lortie, M.; Gagnon, S.; Plant, D.V. Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography. Sensors 2019, 19, 3472. [Google Scholar] [CrossRef]
- Friedrich, D.; Aubert, X.L.; Fuhr, H.; Brauers, A. Heart rate estimation on a beat-to-beat basis via ballistocardiography—A hybrid approach. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4048–4051. [Google Scholar] [CrossRef]
- Martín-Yebra, A.; Landreani, F.; Casellato, C.; Pavan, E.; Frigo, C.; Migeotte, P.F.; Caiani, E.G. Studying Heart Rate Variability from Ballistocardiography Acquired by Force Platform: Comparison with Conventional ECG. In Proceedings of the Computing in Cardiology Conference, (CinC), Nice, France, 6–9 September 2015; pp. 929–932. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Z.; Yu, B.; Jiang, F.; Geng, N.; Li, Y.; Xu, L.; Zheng, D.; Zhang, B.; Lu, P.; et al. Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals. Sensors 2022, 22, 2423. [Google Scholar] [CrossRef]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers. Sensors 2020, 20, 4522. [Google Scholar] [CrossRef]
- Tadi, M.J.; Lehtonen, E.; Koivisto, T.; Pänkäälä, M.; Paasio, A.; Teräs, M. Seismocardiography: Toward heart rate variability (HRV) estimation. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 261–266. [Google Scholar] [CrossRef]
- Siecinski, S.; Tkacz, E.J.; Kostka, P.S. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database. BioMed. Eng. OnLine 2019, 18, 69. [Google Scholar] [CrossRef]
- Siecinski, S.; Kostka, P.S.; Tkacz, E.J. Time Domain And Frequency Domain Heart Rate Variability Analysis on Gyrocardiograms. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2630–2633. [Google Scholar] [CrossRef]
- Ramos-Castro, J.; Moreno, J.; Miranda-Vidal, H.; García-González, M.A.; Fernández-Chimeno, M.; Rodas, G.; Capdevila, L. Heart rate variability analysis using a seismocardiogram signal. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5642–5645. [Google Scholar] [CrossRef]
- Choudhary, T.; Das, M.; Sharma, L.; Bhuyan, M. Analyzing seismocardiographic approach for heart rate variability measurement. Biomed. Signal Process. Control 2021, 68, 102793. [Google Scholar] [CrossRef]
- Landreani, F.; Morri, M.; Martin-Yebra, A.; Casellato, C.; Pavan, E.; Frigo, C.; Caiani, E.G. Ultra-short-term heart rate variability analysis on accelerometric signals from mobile phone. In Proceedings of the 6th IEEE International Conference on E-Health and Bioengineering (EHB), Sinaia, Romania, 22–24 June 2017. [Google Scholar] [CrossRef]
- Landreani, F.; Faini, A.; Martin-Yebra, A.; Morri, M.; Parati, G.; Caiani, E.G. Assessment of Ultra-Short Heart Variability Indices Derived by Smartphone Accelerometers for Stress Detection. Sensors 2019, 19, 3729. [Google Scholar] [CrossRef]
- Shin, J.H.; Hwang, S.H.; Chang, M.H.; Park, K.S. Heart rate variability analysis using a ballistocardiogram during Valsalva manoeuvre and post exercise. Physiol. Meas. 2011, 32, 1239–1264. [Google Scholar] [CrossRef]
- Milena, Č.; Romano, C.; De Tommasi, F.; Carassiti, M.; Formica, D.; Schena, E.; Massaroni, C. Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU. Sensors 2023, 23, 1615. [Google Scholar] [CrossRef]
- Lahdenoja, O.; Hurnanen, T.; Tadi, M.J.; Pänkäälä, M.; Koivisto, T. Heart Rate Variability Estimation with Joint Accelerometer and Gyroscope Sensing. In Proceedings of the Computing in Cardiology, Vancouver, BC, Canada, 11–14 September 2016; Volume 43, pp. 717–720. [Google Scholar] [CrossRef]
- Işilay Zeybek, Z.M.; Racca, V.; Pezzano, A.; Tavanelli, M.; Di Rienzo, M. Can Seismocardiogram Fiducial Points Be Used for the Routine Estimation of Cardiac Time Intervals in Cardiac Patients? Front. Physiol. 2022, 13, 825918. [Google Scholar] [CrossRef]
- Siecinski, S.; Kostka, P.S.; Tkacz, E.J. Time Domain and Frequency Domain Heart Rate Variability Analysis on Electrocardiograms and Mechanocardiograms from Patients with Valvular Diseases. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 653–656. [Google Scholar] [CrossRef]
- Siecinski, S.; Kostka, P.S.; Tkacz, E.J. Comparison of Heart Rate Variability Indices Based on Seismocardiograms from Healthy Volunteers and Patients with Valvular Heart Diseases. In Proceedings of the Computing in Cardiology Conference, Tampere, Finland, 4–7 September 2022. [Google Scholar] [CrossRef]
- Sieciński, S.; Tkacz, E.J.; Kostka, P.S. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms of Healthy Volunteers and Patients with Valvular Heart Diseases. Sensors 2023, 23, 2152. [Google Scholar] [CrossRef]
- Centracchio, J.; Parlato, S.; Esposito, D.; Bifulco, P.; Andreozzi, E. ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. Sensors 2023, 23, 4684. [Google Scholar] [CrossRef] [PubMed]
- Parlato, S.; Centracchio, J.; Esposito, D.; Bifulco, P.; Andreozzi, E. Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. Sensors 2023, 23, 6200. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fan, F.; Aranoff, N.; Green, P.; Li, Y.; Liu, C.; Tavassolian, N. An Open-Access Database for the Evaluation of Cardio-Mechanical Signals From Patients with Valvular Heart Diseases. Front. Physiol. 2021, 12, 750221. [Google Scholar] [CrossRef] [PubMed]
- Kaisti, M.; Tadi, M.J.; Lahdenoja, O.; Hurnanen, T.; Pänkäälä, M.; Koivisto, T. Mechanocardiograms with ECG Reference. IEEE DataPort. 2018. Available online: https://ieee-dataport.org/documents/mechanocardiograms-ecg-reference (accessed on 12 June 2023).
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Sedghamiz, H. BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals. J. Open. Source Softw. 2018, 3, 671. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV--heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Niskanen, J.P.; Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. Software for advanced HRV analysis. Comput. Methods Programs Biomed. 2004, 76, 73–81. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Lipponen, J.A.; Tarvainen, M.P. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J. Med. Eng. Technol. 2019, 43, 173–181. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.M.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Methods Programs Biomed. 2012, 108, 1287–1301. [Google Scholar] [CrossRef]
- Smolders, K.C.H.J.; de Kort, Y.A.W.; Cluitmans, P.J.M. A higher illuminance induces alertness even during office hours: Findings on subjective measures, task performance and heart rate measures. Physiol. Behav. 2012, 107, 7–1620. [Google Scholar] [CrossRef]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–79718. [Google Scholar] [CrossRef] [PubMed]
- Geisler, F.C.M.; Kubiak, T.; Siewert, K.; Weber, H. Cardiac vagal tone is associated with social engagement and self-regulation. Biol. Psychol. 2013, 93, 279–286. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart rate variability and cardiac vagal tone in psychophysiological research—Recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P.; et al. Chronic vagus nerve stimulation in Crohn’s disease: A 6-month follow-up pilot study. Neurogastroenterol. Motil. 2016, 28, 948–9531. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.P.; Cash, C.; Rankin, C.; Bernardi, A.; Koenig, J.; Thayer, J.F. Resting heart rate variability predicts self-reported difficulties in emotion regulation: A focus on different facets of emotion regulation. Front. Psychol. 2015, 6, 00261. [Google Scholar] [CrossRef] [PubMed]
- Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016, 116, 563–5711. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Lipponen, J.; Niskanen, J.-P.; Ranta-aho, P.O. Kubios HRV (Ver 3.1) USER’S GUIDE. Available online: http://www.kubios.com/downloads/Kubios_HRV_Users_Guide_3_1_0.pdf (accessed on 18 July 2023).
- Passing, H.; Bablok, W. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. J. Clin. Chem. Clin. Biochem. 1983, 21, 709–720. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ran, K. Bland-Altman and Correlation Plot, MATLAB Central File Exchange. 2020. Available online: https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot (accessed on 15 March 2023).
Time-Domain Indices | Frequency-Domain Indices | Non-Linear Indices |
---|---|---|
Mean RR (ms) | LF absolute power (ms2) | Poincaré SD1 (ms) |
SDNN (ms) | HF absolute power (ms2) | Poincaré SD2 (ms) |
Mean HR (bpm) | LF relative power | Poincaré SD2/SD1 |
SD HR (bpm) | HF relative power | Approximate entropy |
Min HR (bpm) | LF normalized power | Sample entropy |
Max HR (bpm) | HF normalized power | DFA α1 |
RMSSD (ms) | Total power (ms2) | DFA α2 |
NN50 (beats) | LF/HF | |
pNN50 (adim) |
HRV Index | r | CIr | Slope | CIslope | Intercept | CIintercept |
---|---|---|---|---|---|---|
Mean RR * | 0.998 | [0.995; 0.999] | 1.003 | [1.000; 1.013] | −2.840 | [−12.394; −0.116] |
SDNN * | 0.994 | [0.987; 0.997] | 0.996 | [0.967; 1.015] | 0.343 | [−0.463; 1.434] |
Mean HR * | 0.999 | [0.997; 0.999] | 1.003 | [1.000; 1.012] | −0.173 | [−0.781; −0.008] |
SD HR * | 0.982 | [0.962; 0.992] | 0.991 | [0.939; 1.011] | 0.042 | [−0.022; 0.188] |
Min HR * | 0.982 | [0.962; 0.992] | 1.000 | [0.999; 1.002] | 0.009 | [−0.117; 0.066] |
Max HR * | 0.915 | [0.825; 0.960] | 1.001 | [0.996; 1.006] | −0.037 | [−0.418; 0.371] |
RMSSD * | 0.993 | [0.985; 0.997] | 0.998 | [0.969; 1.022] | 0.313 | [−0.778; 1.388] |
NN50 * | 0.998 | [0.996; 0.999] | 1.000 | [0.972; 1.031] | 1.000 | [−3.047; 2.593] |
pNN50 * | 0.997 | [0.994; 0.999] | 1.012 | [0.975; 1.052] | −0.211 | [−1.072; 0.838] |
LF absolute power * | 0.984 | [0.967; 0.993] | 0.998 | [0.973; 1.012] | 10.921 | [0.503; 37.109] |
HF absolute power * | 0.983 | [0.965; 0.992] | 1.004 | [0.959; 1.032] | 9.575 | [−11.543; 47.347] |
LF relative power * | 0.974 | [0.945; 0.988] | 0.990 | [0.930; 1.018] | 0.475 | [−1.152; 3.107] |
HF relative power * | 0.974 | [0.945; 0.988] | 0.991 | [0.932; 1.021] | 0.506 | [−0.883; 3.799] |
LF normalized power * | 0.974 | [0.945; 0.988] | 0.991 | [0.932; 1.022] | 0.421 | [−1.194; 2.741] |
HF normalized power * | 0.974 | [0.945; 0.988] | 0.991 | [0.931; 1.022] | 0.503 | [−0.975; 4.071] |
Total power * | 0.993 | [0.985; 0.997] | 0.995 | [0.936; 1.014] | 26.638 | [−6.793; 115.472] |
LF/HF * | 0.982 | [0.961; 0.991] | 0.984 | [0.897; 1.020] | 0.012 | [−0.021; 0.062] |
Poincaré SD1 * | 0.993 | [0.985; 0.997] | 0.998 | [0.969; 1.021] | 0.222 | [−0.522; 0.992] |
Poincaré SD2 * | 0.995 | [0.988; 0.998] | 0.988 | [0.957; 1.002] | 0.882 | [0.093; 2.399] |
SD2/SD1 * | 0.990 | [0.979; 0.995] | 0.996 | [0.961; 1.042] | 0.007 | [−0.078; 0.066] |
Approximate entropy * | 0.993 | [0.984; 0.997] | 1.016 | [0.968; 1.066] | −0.016 | [−0.067; 0.029] |
Sample entropy * | 0.852 | [0.705; 0.928] | 1.025 | [0.899; 1.149] | −0.036 | [−0.226; 0.159] |
DFA α1 * | 0.972 | [0.940; 0.987] | 1.001 | [0.971; 1.051] | 0 | [−0.049; 0.028] |
DFA α2 * | 0.967 | [0.930; 0.985] | 0.990 | [0.925; 1.024] | 0.003 | [−0.003; 0.018] |
HRV Index | Bias | CIbias | LoA | CILoA min | CILoA max |
---|---|---|---|---|---|
Mean RR * | 0 | [−0.061; 0.030] | [−3.319; 33.299] | [−3.365; −2.619] | [25.352; 35.487] |
SDNN * | 0.106 | [0.069; 0.478] | [−11.024; 3.284] | [−12.528; −4.828] | [2.841; 3.379] |
Mean HR * | 0 | [−0.002; 0.007] | [−1.616; 0.213] | [−1.623; −1.177] | [0.158; 0.224] |
SD HR * | 0.013 | [0.002; 0.026] | [−1.032; 0.233] | [−1.204; −0.354] | [0.202; 0.234] |
Min HR * | −0.018 | [−0.028; −0.012] | [−5.775; 1.451] | [−7.080; −1.015] | [0.043; 1.857] |
Max HR * | 0.038 | [0.019; 0.060] | [−15.102; 5.219] | [−15.254; −11.316] | [1.213; 6.310] |
RMSSD * | 0.239 | [−0.03; 0.403] | [−13.254; 4.288] | [−14.591; −7.061] | [3.274; 4.456] |
NN50 | −0.138 | [−2.025; 1.75] | [−10.476; 10.200] | [−13.838; −7.114] | [6.838; 13.563] |
pNN50 | 0.136 | [−0.441; 0.712] | [−3.021; 3.292] | [−4.048; −1.995] | [2.266; 4.319] |
LF absolute power * | 8.032 | [3.756; 22.21] | [−1991.966; 523.142] | [−2262.832; −841.009] | [69.770; 653.836] |
HF absolute power * | 12.248 | [0.77; 27.906] | [−958.158; 489.074] | [−1132.237; −306.394] | [219.932; 558.145] |
LF relative power * | −0.063 | [−0.781; 0.174] | [−12.024; 9.500] | [−14.202; −4.461] | [6.477; 9.983] |
HF relative power * | 0.067 | [−0.284; 0.373] | [−9.651; 12.934] | [−9.930; −6.902] | [4.421; 15.369] |
LF normalized power * | −0.078 | [−0.407; 0.303] | [−13.007; 9.697] | [−15.444; −4.456] | [6.828; 10.037] |
HF normalized power * | 0.077 | [−0.302; 0.394] | [−9.673; 13.001] | [−10.018; −6.818] | [4.459; 15.435] |
Total power * | 18.625 | [7.175; 48.412] | [−1983.120; 159.941] | [−2346.200; −676.945] | [143.153; 161.655] |
LF/HF * | −0.007 | [−0.026; 0.007] | [−0.661; 0.371] | [−0.682; −0.583] | [0.174; 0.424] |
Poincaré SD1 * | 0.169 | [−0.021; 0.285] | [−9.390; 3.067] | [−10.327; −5.012] | [2.320; 3.194] |
Poincaré SD2 * | 0.229 | [0.083; 0.399] | [−11.718; 3.699] | [−13.841; −4.232] | [3.039; 3.741] |
SD2/SD1 * | −0.001 | [−0.012; 0.012] | [−0.126; 0.180] | [−0.133; −0.093] | [0.144; 0.189] |
Approximate entropy | 0 | [−0.012; 0.013] | [−0.068; 0.068] | [−0.090; −0.046] | [0.046; 0.090] |
Sample entropy * | 0.002 | [−0.036; 0.041] | [−0.128; 0.652] | [−0.132; −0.109] | [0.117; 0.806] |
DFA α1 * | 0.001 | [−0.002; 0.008] | [−0.189; 0.093] | [−0.196; −0.151] | [0.067; 0.098] |
DFA α2 * | 0.002 | [0; 0.006] | [−0.016; 0.118] | [−0.017; −0.009] | [0.084; 0.125] |
HRV Index | r | CIr | Slope | CIslope | Intercept | CIintercept |
---|---|---|---|---|---|---|
Mean RR * | 0.999 | [0.997; 0.999] | 1.000 | [0.999; 1.001] | −0.044 | [−0.526; 1.166] |
SDNN * | 0.995 | [0.990; 0.998] | 0.986 | [0.955; 1.002] | 0.983 | [0.307; 2.255] |
Mean HR * | 0.999 | [0.998; 1.000] | 1.000 | [0.999; 1.001] | −0.004 | [−0.039; 0.079] |
SD HR * | 0.994 | [0.986; 0.997] | 0.993 | [0.961; 1.007] | 0.054 | [0.008; 0.160] |
Min HR * | 0.994 | [0.987; 0.997] | 0.997 | [0.986; 1.000] | 0.137 | [0.011; 0.793] |
Max HR * | 0.933 | [0.861; 0.968] | 1.001 | [0.998; 1.007] | −0.089 | [−0.517; 0.202] |
RMSSD * | 0.990 | [0.979; 0.995] | 0.975 | [0.938; 0.995] | 1.254 | [0.388; 2.792] |
NN50 * | 0.996 | [0.992; 0.998] | 1.010 | [0.992; 1.031] | 0.651 | [−0.653; 1.300] |
pNN50 * | 0.994 | [0.988; 0.997] | 1.009 | [0.986; 1.026] | 0.124 | [−0.331; 0.865] |
LF absolute power * | 0.982 | [0.962; 0.992] | 1.013 | [0.999; 1.031] | 1.112 | [−10.491; 13.718] |
HF absolute power * | 0.985 | [0.968; 0.993] | 1.017 | [0.997; 1.038] | 0.588 | [−16.651; 16.293] |
LF relative power * | 0.966 | [0.929; 0.984] | 1.007 | [0.988; 1.033] | −0.617 | [−1.693; 0.331] |
HF relative power * | 0.976 | [0.950; 0.989] | 1.010 | [0.996; 1.034] | −0.189 | [−1.265; 0.522] |
LF normalized power * | 0.971 | [0.939; 0.987] | 1.008 | [0.992; 1.032] | −0.684 | [−1.791; 0.220] |
HF normalized power * | 0.971 | [0.939; 0.987] | 1.008 | [0.992; 1.032] | −0.069 | [−1.415; 0.616] |
Total power * | 0.990 | [0.979; 0.995] | 1.012 | [0.996; 1.021] | 4.421 | [−9.378; 37.896] |
LF/HF * | 0.972 | [0.940; 0.987] | 0.996 | [0.971; 1.024] | −0.008 | [−0.030; 0.011] |
Poincaré SD1 * | 0.990 | [0.979; 0.995] | 0.975 | [0.938; 0.995] | 0.888 | [0.273; 1.983] |
Poincaré SD2 * | 0.990 | [0.978; 0.995] | 0.995 | [0.977; 1.008] | 0.717 | [0.019; 1.629] |
SD2/SD1 * | 0.965 | [0.925; 0.983] | 0.994 | [0.939; 1.018] | 0.010 | [−0.030; 0.108] |
Approximate entropy * | 0.992 | [0.982; 0.996] | 0.997 | [0.971; 1.037] | 0.009 | [−0.032; 0.034] |
Sample entropy * | 0.871 | [0.740; 0.938] | 0.962 | [0.863; 1.106] | 0.066 | [−0.144; 0.221] |
DFA α1 * | 0.957 | [0.909; 0.980] | 1.015 | [0.989; 1.074] | −0.018 | [−0.065; 0.007] |
DFA α2 * | 0.974 | [0.944; 0.988] | 0.974 | [0.942; 1.002] | 0.005 | [−0.001; 0.013] |
HRV Index | Bias | CIbias | LoA | CILoA min | CILoA max |
---|---|---|---|---|---|
Mean RR * | 0.004 | [−0.008; 0.034] | [−15.224; 21.364] | [−18.838; −2.367] | [9.774; 23.969] |
SDNN * | 0.405 | [0.146; 0.541] | [−7.446; 5.486] | [−8.708; −2.482] | [4.146; 5.651] |
Mean HR * | 0 | [−0.002; 0.001] | [−1.000; 0.995] | [−1.097; −0.090] | [0.134; 1.239] |
SD HR * | 0.031 | [0.022; 0.046] | [−0.324; 0.448] | [−0.359; −0.168] | [0.354; 0.454] |
Min HR * | −0.012 | [−0.028; 0] | [−2.481; 2.030] | [−2.99; −0.700] | [1.533; 2.055] |
Max HR * | 0.019 | [−0.021; 0.046] | [−12.138; 8.000] | [−13.549; −6.201] | [5.643; 8.366] |
RMSSD * | 0.199 | [0.024; 0.583] | [−13.48; 1.884] | [−13.785; −11.135] | [1.715; 1.896] |
NN50 * | 1.000 | [0; 3.000] | [−26.475; 9.325] | [−33.000; −3.325] | [6.775; 10.000] |
pNN50 * | 0.429 | [0; 0.893] | [−7.631; 2.866] | [−8.674; −3.361] | [2.264; 2.941] |
LF absolute power * | 11.633 | [3.469; 18.106] | [−1637.084; 886.249] | [−2051.11; −167.098] | [150.984; 1094.418] |
HF absolute power * | 14.505 | [2.195; 41.863] | [−862.011; 262.361] | [−982.636; −349.895] | [195.484; 273.396] |
LF relative power * | −0.267 | [−0.585; 0.032] | [−4.241; 18.982] | [−4.702; −2.518] | [1.750; 23.901] |
HF relative power * | 0.368 | [0.029; 0.584] | [−17.048; 2.344] | [−21.236; −2.147] | [2.069; 2.347] |
LF normalized power * | −0.317 | [−0.686; 0.002] | [−3.245; 18.754] | [−3.533; −2.132] | [2.088; 23.474] |
HF normalized power * | 0.317 | [−0.001; 0.684] | [−18.744; 3.256] | [−23.463; −2.081] | [2.128; 3.549] |
Total power * | 25.093 | [15.185; 58.74] | [−1830.18; 406.8] | [−2343.112; −51.739] | [304.384; 420.661] |
LF/HF * | −0.011 | [−0.023; 0] | [−0.230; 1.177] | [−0.239; −0.172] | [0.178; 1.456] |
Poincaré SD1 * | 0.141 | [0.017; 0.412] | [−9.553; 1.335] | [−9.771; −8.047] | [1.247; 1.342] |
Poincaré SD2 * | 0.495 | [0.318; 0.695] | [−7.662; 14.356] | [−9.463; −1.324] | [7.332; 15.873] |
SD2/SD1 * | 0.002 | [−0.007; 0.007] | [−0.113; 0.520] | [−0.120; −0.076] | [0.238; 0.590] |
Approximate entropy * | 0.005 | [−0.007; 0.013] | [−0.086; 0.101] | [−0.101; −0.030] | [0.066; 0.108] |
Sample entropy * | 0.005 | [−0.009; 0.021] | [−0.258; 0.485] | [−0.278; −0.163] | [0.374; 0.490] |
DFA α1 * | −0.003 | [−0.010; 0] | [−0.073; 0.315] | [−0.079; −0.050] | [0.116; 0.369] |
DFA α2 * | 0 | [−0.001; 0.002] | [−0.043; 0.093] | [−0.048; −0.021] | [0.074; 0.097] |
HRV Index | r | CIr | Slope | CIslope | Intercept | CIintercept |
---|---|---|---|---|---|---|
Mean RR * | 0.9999 | [0.9999; 1.0000] | 1.002 | [1.000; 1.005] | −1.309 | [−3.618; −0.044] |
SDNN * | 0.9944 | [0.9895; 0.9970] | 0.967 | [0.939; 0.997] | 0.423 | [0.063; 0.942] |
Mean HR * | 0.99995 | [0.9999; 1.0000] | 1.001 | [1.000; 1.004] | −0.115 | [−0.336; −0.024] |
SD HR * | 0.9911 | [0.9835; 0.9953] | 0.971 | [0.947; 1.006] | 0.045 | [−0.002; 0.075] |
Min HR * | 0.9990 | [0.9982; 0.9995] | 0.999 | [0.997; 1.001] | 0.026 | [−0.082; 0.166] |
Max HR ** | 0.9988 | [0.9977; 0.9993] | 1.005 | [1.001; 1.016] | −0.354 | [−1.261; −0.033] |
RMSSD * | 0.9960 | [0.9925; 0.9978] | 0.945 | [0.907; 0.978] | 0.790 | [0.093; 1.349] |
NN50 * | 0.9668 | [0.9388; 0.9822] | 0.939 | [0.826; 0.980] | 0 | [0; 0] |
pNN50 * | 0.9797 | [0.9623; 0.9891] | 0.939 | [0.812; 0.988] | 0 | [0; 0] |
LF absolute power * | 0.9665 | [0.9382; 0.9820] | 1.034 | [0.994; 1.084] | 0.013 | [−1.461; 0.983] |
HF absolute power * | 0.9994 | [0.9988; 0.9997] | 0.921 | [0.859; 0.947] | 2.071 | [0.118; 7.406] |
LF relative power * | 0.9011 | [0.8223; 0.9459] | 0.991 | [0.872; 1.094] | 1.522 | [−2.258; 6.836] |
HF relative power * | 0.9401 | [0.8907; 0.9676] | 0.970 | [0.871; 1.072] | −0.034 | [−5.927; 4.012] |
LF normalized power * | 0.9278 | [0.8688; 0.9608] | 0.988 | [0.884; 1.103] | 1.789 | [−2.565; 7.255] |
HF normalized power * | 0.9279 | [0.8691; 0.9609] | 0.989 | [0.883; 1.104] | −0.630 | [−7.780; 4.439] |
Total power * | 0.9946 | [0.9900; 0.9971] | 0.975 | [0.938; 1.029] | 5.212 | [−2.606; 12.354] |
LF/HF * | 0.8127 | [0.6757; 0.8955] | 1.043 | [0.923; 1.197] | 0.013 | [−0.038; 0.097] |
Poincaré SD1 * | 0.9960 | [0.9925; 0.9978] | 0.944 | [0.906; 0.977] | 0.566 | [0.076; 0.964] |
Poincaré SD2 * | 0.9872 | [0.9761; 0.9931] | 0.973 | [0.945; 0.996] | 0.583 | [0.061; 1.077] |
SD2/SD1 * | 0.9131 | [0.8432; 0.9527] | 0.936 | [0.827; 1.074] | 0.102 | [−0.064; 0.252] |
Approximate entropy * | 0.952 | [0.9119; 0.9741] | 1.160 | [1.029; 1.294] | −0.213 | [−0.375; −0.047] |
Sample entropy * | 0.7910 | [0.6413; 0.8827] | 0.928 | [0.799; 1.081] | 0.107 | [−0.170; 0.339] |
DFA α1 * | 0.9356 | [0.8827; 0.9651] | 0.969 | [0.874; 1.080] | 0.036 | [−0.034; 0.127] |
DFA α2 * | 0.9535 | [0.9146; 0.9749] | 1.013 | [0.951; 1.091] | −0.011 | [−0.046; 0.016] |
HRV Index | Bias | CIbias | LoA | CILoA min | CILoA max |
---|---|---|---|---|---|
Mean RR * | 0.234 | [0.031; 0.402] | [−2.045; 6.132] | [−2.990; −1.010] | [3.606; 8.2] |
SDNN * | 0.040 | [−0.192; 0.352] | [−4.141; 4.414] | [−4.975; −2.941] | [2.889; 5.17] |
Mean HR * | −0.014 | [−0.037; −0.003] | [−0.381; 0.313] | [−0.505; −0.260] | [0.085; 0.556] |
SD HR * | 0.003 | [−0.018; 0.031] | [−0.327; 0.343] | [−0.339; −0.241] | [0.279; 0.376] |
Min HR * | −0.029 | [−0.042; −0.013] | [−2.200; 0.511] | [−2.540; −1.472] | [0.099; 0.936] |
Max HR * | 0 | [−0.023; 0.047] | [−2.227; 1.297] | [−2.823; −1.543] | [1.052; 1.423] |
RMSSD * | −0.301 | [−0.800; 0.456] | [−6.267; 2.886] | [−7.064; −4.406] | [2.718; 3.07] |
NN50 * | −0.500 | [−1.000; 0] | [−34.100; 6.900] | [−66.000; −7.000] | [5; 8] |
pNN50 * | −0.074 | [−0.196; 0] | [−9.148; 2.001] | [−16.561; −2.166] | [1.39; 2.103] |
LF absolute power * | 0.744 | [0.122; 3.916] | [−124.02; 415.754] | [−151.708; −49.850] | [223.816; 615.848] |
HF absolute power * | −2.725 | [−9.616; −0.538] | [−581.508; 34.352] | [−1179.716; −87.789] | [27.523; 39.36] |
LF relative power * | 0.962 | [−0.230; 3.585] | [−10.183; 26.251] | [−11.033; −7.283] | [21.037; 28.539] |
HF relative power * | −1.345 | [−4.163; 0.014] | [−24.080; 8.762] | [−26.460; −18.815] | [6.325; 11.33] |
LF normalized power * | 1.146 | [−0.251; 4.520] | [−8.879; 26.748] | [−10.577; −7.105] | [19.137; 28.597] |
HF normalized power * | −1.158 | [−4.548; 0.128] | [−26.661; 8.886] | [−28.542; −18.413] | [7.1; 10.569] |
Total power * | 0.909 | [−2.803; 6.909] | [−524.008; 374.227] | [−881.252; −163.948] | [152.056; 493.838] |
LF/HF * | 0.064 | [−0.003; 0.220] | [−0.874; 2.623] | [−1.100; −0.616] | [0.921; 4.133] |
Poincaré SD1 * | −0.212 | [−0.566; 0.323] | [−4.436; 2.046] | [−4.999; −3.104] | [1.884; 2.18] |
Poincaré SD2 * | 0.007 | [−0.156; 0.325] | [−5.381; 9.105] | [−6.320; −3.318] | [6.109; 12.683] |
SD2/SD1 * | 0.033 | [−0.028; 0.082] | [−0.406; 0.570] | [−0.546; −0.241] | [0.434; 0.626] |
Approximate entropy | −0.014 | [−0.034; 0.006] | [−0.142; 0.115] | [−0.177; −0.108] | [0.08; 0.149] |
Sample entropy * | −0.029 | [−0.059; 0.017] | [−0.641; 0.314] | [−1.016; −0.311] | [0.206; 0.335] |
DFA α1 | 0.028 | [−0.005; 0.062] | [−0.192; 0.249] | [−0.252; −0.133] | [0.19; 0.308] |
DFA α2 * | −0.006 | [−0.014; 0.003] | [−0.096; 0.126] | [−0.098; −0.083] | [0.069; 0.17] |
HRV Index | r | CIr | Slope | CIslope | Intercept | CIintercept |
---|---|---|---|---|---|---|
Mean RR * | 0.9988 | [0.9979; 0.9993] | 1.001 | [1.000; 1.003] | −0.611 | [−1.974; 0.182] |
SDNN * | 0.9973 | [0.9952; 0.9985] | 0.958 | [0.933; 0.981] | 0.660 | [0.290; 1.018] |
Mean HR * | 0.9993 | [0.9988; 0.9996] | 1.001 | [1.000; 1.002] | −0.049 | [−0.148; 0.015] |
SD HR * | 0.9926 | [0.9868; 0.9958] | 0.953 | [0.922; 0.991] | 0.057 | [0.007; 0.101] |
Min HR * | 0.9939 | [0.9892; 0.9966] | 1.000 | [0.996; 1.003] | −0.026 | [−0.200; 0.225] |
Max HR * | 0.9697 | [0.9465; 0.9829] | 1.002 | [0.999; 1.005] | −0.117 | [−0.346; 0.084] |
RMSSD * | 0.9655 | [0.9393; 0.9805] | 0.905 | [0.861; 0.956] | 1.064 | [0.304; 1.858] |
NN50 * | 0.9480 | [0.9092; 0.9705] | 0.887 | [0.722; 1.000] | 0 | [0; 0] |
pNN50 * | 0.9619 | [0.9331; 0.9785] | 0.890 | [0.755; 1.000] | 0 | [0; 0] |
LF absolute power * | 0.8218 | [0.7031; 0.8960] | 1.017 | [0.994; 1.061] | 0.534 | [−0.483; 2.067] |
HF absolute power * | 0.9264 | [0.8724; 0.9580] | 0.854 | [0.772; 0.921] | 2.643 | [0.118; 7.785] |
LF relative power * | 0.8712 | [0.7815; 0.9257] | 0.996 | [0.913; 1.070] | 1.794 | [−1.364; 5.745] |
HF relative power * | 0.8469 | [0.7426; 0.9111] | 0.994 | [0.895; 1.073] | −1.396 | [−4.919; 2.196] |
LF normalized power * | 0.8567 | [0.7581; 0.9170] | 0.991 | [0.900; 1.069] | 2.662 | [−1.178; 8.195] |
HF normalized power * | 0.8571 | [0.7587; 0.9172] | 0.991 | [0.899; 1.069] | −1.910 | [−5.770; 1.857] |
Total power * | 0.9792 | [0.9632; 0.9883] | 0.945 | [0.891; 0.983] | 6.346 | [2.552; 14.176] |
LF/HF * | 0.8069 | [0.6800; 0.8869] | 1.107 | [0.965; 1.220] | −0.004 | [−0.088; 0.141] |
Poincaré SD1 * | 0.9655 | [0.9393; 0.9805] | 0.905 | [0.861; 0.956] | 0.754 | [0.216; 1.314] |
Poincaré SD2 * | 0.9879 | [0.9785; 0.9932] | 0.975 | [0.950; 1.005] | 0.516 | [−0.101; 0.871] |
SD2/SD1 * | 0.8623 | [0.7671; 0.9203] | 0.952 | [0.847; 1.037] | 0.109 | [−0.012; 0.270] |
Approximate entropy * | 0.9353 | [0.8875; 0.9632] | 0.989 | [0.896; 1.129] | 0.003 | [−0.162; 0.107] |
Sample entropy * | 0.7906 | [0.6551; 0.8769] | 0.884 | [0.754; 1.092] | 0.166 | [−0.160; 0.414] |
DFA α1 * | 0.8812 | [0.7976; 0.9315] | 0.943 | [0.830; 1.054] | 0.078 | [−0.026; 0.160] |
DFA α2 * | 0.976 | [0.9576; 0.9864] | 0.919 | [0.869; 0.968] | 0.026 | [0.008; 0.048] |
HRV Index | Bias | CIbias | LoA | CILoA min | CILoA max |
---|---|---|---|---|---|
Mean RR * | 0.089 | [0.017; 0.326] | [−13.877; 9.309] | [−44.947; −1.722] | [3.849; 22.720] |
SDNN * | −0.072 | [−0.443; 0.175] | [−4.526; 3.22] | [−5.308; −3.330] | [1.852; 5.051] |
Mean HR * | −0.007 | [−0.031; −0.002] | [−0.541; 0.94] | [−1.199; −0.236] | [0.187; 2.923] |
SD HR * | −0.011 | [−0.029; 0.010] | [−0.439; 0.379] | [−0.703; −0.300] | [0.180; 0.475] |
Min HR * | −0.026 | [−0.046; 0] | [−3.967; 0.782] | [−9.512; −1.688] | [0.215; 1.992] |
Max HR * | 0.032 | [0; 0.060] | [−0.875; 14.57] | [−1.057; −0.440] | [4.855; 18.485] |
RMSSD * | −0.409 | [−1.223; 0.059] | [−33.607; 4.577] | [−62.82;0 −12.495] | [3.774; 6.171] |
NN50 * | 0 | [−1.000; 0] | [−72.8; 9.1] | [−96.000; −24.125] | [4.750; 12.000] |
pNN50 * | 0 | [−0.159; 0] | [−20.793; 2.74] | [−25.810; −7.614] | [1.673; 2.793] |
LF absolute power * | 1.507 | [0.859; 5.145] | [−95.543; 2286.372] | [−132.437; −44.195] | [537.339; 6673.552] |
HF absolute power * | −5.075 | [−23.853; −0.293] | [−2952.447; 80.261] | [−5421.979; −793.827] | [33.796; 100.829] |
LF relative power * | 1.562 | [0.069; 3.266] | [−6.02; 40.733] | [−6.082; −5.184] | [23.365; 50.334] |
HF relative power * | −1.568 | [−3.584; −0.135] | [−50.884; 8.237] | [−60.051; −30.322] | [6.946; 10.86] |
LF normalized power * | 2.151 | [0.156; 3.752] | [−8.319; 47.927] | [−10.683; −6.871] | [30.824; 58.034] |
HF normalized power * | −2.276 | [−3.770; −0.040] | [−47.763; 8.307] | [−57.968; −30.719] | [7.242; 10.758] |
Total power * | 0.318 | [−22.003; 5.581] | [−604.787; 1136.585] | [−1414.523; −255.895] | [201.45; 2473.06] |
LF/HF * | 0.109 | [0.001; 0.190] | [−1.572; 5.298] | [−2.751; −1.019] | [2.435; 11.744] |
Poincaré SD1 * | −0.289 | [−0.866; 0.042] | [−23.799; 3.241] | [−44.49; −7.980] | [2.672; 4.370] |
Poincaré SD2 * | 0.019 | [−0.200; 0.304] | [−3.916; 16.183] | [−4.601; −2.846] | [6.266; 24.955] |
SD2/SD1 * | 0.048 | [0.010; 0.086] | [−0.689; 1.024] | [−0.848; −0.403] | [0.728; 1.145] |
Approximate entropy | −0.016 | [−0.035; 0.002] | [−0.147; 0.114] | [−0.179; −0.115] | [0.082; 0.147] |
Sample entropy * | −0.005 | [−0.057; 0.032] | [−0.572; 0.409] | [−0.608; −0.368] | [0.264; 0.411] |
DFA α1 * | 0.025 | [−0.016; 0.053] | [−0.230; 0.545] | [−0.244; −0.180] | [0.339; 0.599] |
DFA α2 * | −0.003 | [−0.017; 0.001] | [−0.14; 0.081] | [−0.169; −0.079] | [0.049; 0.122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlato, S.; Centracchio, J.; Esposito, D.; Bifulco, P.; Andreozzi, E. ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects. Sensors 2023, 23, 8114. https://doi.org/10.3390/s23198114
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects. Sensors. 2023; 23(19):8114. https://doi.org/10.3390/s23198114
Chicago/Turabian StyleParlato, Salvatore, Jessica Centracchio, Daniele Esposito, Paolo Bifulco, and Emilio Andreozzi. 2023. "ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects" Sensors 23, no. 19: 8114. https://doi.org/10.3390/s23198114
APA StyleParlato, S., Centracchio, J., Esposito, D., Bifulco, P., & Andreozzi, E. (2023). ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects. Sensors, 23(19), 8114. https://doi.org/10.3390/s23198114