Spectrum Sensing Method Based on Residual Dense Network and Attention
Abstract
:1. Introduction
2. System Model
3. Spectrum Sensing Algorithm Based on RDN–CBAM for OFDM
3.1. Data Processing
3.2. Residual Connection
3.3. Dense Connections
3.4. Residual Dense Network
3.5. Convolutional Block Attention Module (CBAM)
Algorithm 1. Spectrum Sensing Algorithm of RDN–CBAM. |
1: Input: training and test set sample data Output: detection probability and false alarm probability 2: Input the training set samples . 3: The predicted label is updated according to Equation (10); Backpropagation is performed to update the loss based on Equation (11) until convergence. 4: Apply the trained RDN–CBAM model to the test data . Calculate the correct number of PU identification and the correct number of noise sample identification. |
5: Finally, the detection probability and false alarm probability are calculated. |
4. Experimental Analysis
4.1. Experimental Conditions
4.2. Experiment 1: Impact of Network Depth on Model Performance
4.3. Experiment 2: Influence of Residual Structure on Model Gradient
4.4. Experiment 3: Comparison of Sensing Efficiency among RDN–CBAM, CNN, and SVM Spectral Sensing Methods
4.5. Experiment 4: Comparison of Spectrum Sensing Performance among Different Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, F.; Feng, Z.; Chen, X. Spectrum occupancy measurement and analysis. ZTE Commun. 2009, 7, 16–20. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Khaled, H.; Ahmad, I.; Habibi, D.; Phung, Q.V. A Secure and Energy-Aware Approach for Cognitive Radio Communications. IEEE Open J. Commun. Soc. 2020, 1, 900–915. [Google Scholar] [CrossRef]
- Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials 2009, 11, 116–130. [Google Scholar] [CrossRef]
- Sun, H.; Nallanathan, A.; Wang, C.-X.; Chen, Y. Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wirel. Commun. 2013, 20, 74–81. [Google Scholar] [CrossRef]
- Hussain, S.; Fernando, X. Spectrum sensing in cognitive radio networks: Up-to-date techniques and future challenges. In Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009; pp. 736–741. [Google Scholar] [CrossRef]
- Margoosian, A.; Abouei, J.; Plataniotis, K.N. Accurate kernel-based spectrum sensing for Gaussian and non-Gaussian noise models. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 3152–3156. [Google Scholar] [CrossRef]
- Ye, Y.; Li, Y.; Lu, G.; Zhou, F. Improved Energy Detection with Laplacian Noise in Cognitive Radio. IEEE Syst. J. 2019, 13, 18–29. [Google Scholar] [CrossRef]
- Bao, J.; Nie, J.; Liu, C.; Jiang, B.; Zhu, F.; He, J. Improved Blind Spectrum Sensing by Covariance Matrix Cholesky Decomposition and RBF-SVM Decision Classification at Low SNRs. IEEE Access 2019, 7, 97117–97129. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep Learning Advances in Computer Vision with 3D Data. ACM Comput. Surv. 2018, 50, 20. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Socher, R.; Bengio, Y.; Manning, C.D. Deep Learning for NLP (without Magic). In Proceedings of the Annual Meeting of the Association for Computational Linguistics (2012), Jeju, Republic of Korea, 8 July 2012. [Google Scholar]
- Zheng, S.; Chen, S.; Yang, L.; Zhu, J.; Luo, Z.; Hu, J.; Yang, X. Big Data Processing Architecture for Radio Signals Empowered by Deep Learning: Concept, Experiment, Applications and Challenges. IEEE Access 2018, 6, 55907–55922. [Google Scholar] [CrossRef]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion Methods for CNN-Based Automatic Modulation Classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, S.; Yang, L.; Yang, X. Deep Learning for Large-Scale Real-World ACARS and ADS-B Radio Signal Classification. IEEE Access 2019, 7, 89256–89264. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, K.; Yu, Y.; Le, N.Q.K.; Chua, M.C.H. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Briefings Bioinform. 2023, 24, bbac630. [Google Scholar] [CrossRef] [PubMed]
- Kha, Q.-H.; Ho, Q.-T.; Le, N.Q.K. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Li, J.; Lin, F. A cognitive radio spectrum sensing method for an OFDM signal based on deep learning and cycle spectrum. Int. J. Digit. Multimed. Broadcast. 2020, 2020, 5069021. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Feng, Y.; Yin, H. A Spectrum Sensing Algorithm for OFDM Signal Based on Deep Learning and Covariance Matrix Graph. IEICE Trans. Commun. 2018, E101.B, 2435–2444. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [Google Scholar] [CrossRef]
Simulation Parameters | Parameter Value |
---|---|
Number of OFDM symbols | 20 |
Number of subcarriers | 128 |
Symbol rate | 12.5 KHz |
Cyclic prefix ratio | 0.25 |
Carrier frequency | 10 MHz |
Sampling frequency | 40 MHz |
Chip frequency | 0.5 MHz |
Smoothing points | 16 |
Algorithm | Training Time/s | Sensing Time/s |
---|---|---|
RDN–CBAM_5L | 21.43 | 2.23 |
CNN_5L | 24.92 | 2.74 |
RDN–CBAM_20L | 32.75 | 3.93 |
CNN_20L | 37.31 | 5.71 |
SVM | 14.57 | 10.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Meng, Q.; Wang, M. Spectrum Sensing Method Based on Residual Dense Network and Attention. Sensors 2023, 23, 7791. https://doi.org/10.3390/s23187791
Wang A, Meng Q, Wang M. Spectrum Sensing Method Based on Residual Dense Network and Attention. Sensors. 2023; 23(18):7791. https://doi.org/10.3390/s23187791
Chicago/Turabian StyleWang, Anyi, Qifeng Meng, and Mingbo Wang. 2023. "Spectrum Sensing Method Based on Residual Dense Network and Attention" Sensors 23, no. 18: 7791. https://doi.org/10.3390/s23187791
APA StyleWang, A., Meng, Q., & Wang, M. (2023). Spectrum Sensing Method Based on Residual Dense Network and Attention. Sensors, 23(18), 7791. https://doi.org/10.3390/s23187791