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Abstract: To address the problems of gradient vanishing and limited feature extraction capability of
traditional CNN spectrum sensing methods in deep network structures and to effectively avoid net-
work degradation issues under deep network structures, this paper proposes a collaborative spectrum
sensing method based on Residual Dense Network and attention mechanisms. This method involves
stacking and normalizing the time-domain information of the signal, constructing a two-dimensional
matrix, and mapping it to a grayscale image. The grayscale images are divided into training and
testing sets, and the training set is used to train the neural network to extract deep features. Finally,
the test set is fed into the well-trained neural network for spectrum sensing. Experimental results
show that, under low signal-to-noise ratios, the proposed method demonstrates superior spectral
sensing performance compared to traditional collaborative spectrum sensing methods.

Keywords: cooperative spectrum sensing; residual dense network; attention mechanism

1. Introduction

In the evolving global economy and advancements in information technology, the de-
mand for spectrum resources within the 5G frequency band is consistently rising. However,
the limited availability of these spectrum resources hampers the high-speed, large-capacity
growth of 5G networks [1] and the swift proliferation of the Internet of Things (IoT) [2].
To optimize the use of these resources, cognitive radio (CR) has been introduced as an
efficacious solution [3]. This technology permits secondary users (SU) to access idle fre-
quency bands without disrupting the operations of primary users (PU), thus significantly
enhancing the utilization of spectrum resources.

Spectrum sensing is a fundamental requirement for enabling dynamic spectrum access
in cognitive radio [4,5]. This technology assists secondary users in swiftly and accurately
identifying and utilizing idle spectrum, thereby enhancing their probability of spectrum
access [6]. The primary categories of spectrum sensing are single-user spectrum sensing
and collaborative spectrum sensing. Reference [7] primarily investigates a spectrum sens-
ing method based on the Kernelized Energy Detector (KED). Compared to the traditional
Energy Detector (ED), this method offers greater accuracy, especially in non-Gaussian noise
environments. Reference [8] focuses on improving the ED in a Laplacian noise setting and
introduces a new test statistic to enhance detection performance. Traditional single-user
spectrum sensing is susceptible to challenges such as a low signal-to-noise ratio (SNR),
pronounced shadow fading, and the presence of hidden terminals. While collaborative
spectrum sensing can mitigate these issues to some degree, it often grapples with determin-
ing an appropriate threshold value in real-world settings. Recent studies have explored
spectrum sensing through machine-learning techniques. Unlike traditional methods, these
algorithms eliminate the need for intricate threshold derivations and can efficiently clas-
sify and recognize signals after classifier training. For instance, literature [9] employed a
support vector machine (SVM) trained on signal energy vector features. However, this
approach exhibits subpar detection performance in low SNR conditions, and training the
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SVM is notably time-consuming. Deep learning [10,11] has been extensively applied in
image processing [12,13], speech recognition [14], natural language processing [15], and
radio signal classification [16–18]. Additionally, deep learning has also found applications
in the medical field [19,20]. Convolutional neural networks (CNNs) are effective tools for
extracting target features and offer superior performance in 2D image feature extraction
compared to other machine learning algorithms. In the study presented in [21], signal recog-
nition is achieved by normalizing the cyclic spectrum of OFDM (Orthogonal Frequency
Division Multiplexing) signals to grayscale, creating a cyclic autocorrelation grayscale
image, and subsequently training a CNN. However, this approach is limited to single-user
spectrum sensing. Another study [22] introduces a spectrum sensing technique that utilizes
the signal covariance matrix. This method involves converting the covariance matrix into a
grayscale image and feeding it into the CNN model for spectrum sensing. Nevertheless,
the capacity of the CNN model to extract features is constrained. Additionally, as the
depth of the model increases, CNNs may encounter the gradient vanishing issue, leading
to suboptimal accuracy in spectrum sensing.

The Residual Neural Network (ResNet) [23] effectively addresses the gradient van-
ishing issue and mitigates overfitting through the incorporation of shortcut connections
within the CNN architecture. This allows for the expansion of network layers. Nevertheless,
ResNet does not fully harness the information from the output of each layer within the
residual block, nor does it acknowledge the interrelation between distinct convolutional
layers. By seamlessly integrating dense connections into ResNet and ensuring that all
neurons from one layer connect with the subsequent layer, we enhance the interchange of
feature extraction information between any pair of convolutional layers. This led to the
introduction of the Residual Dense Network (RDN). However, with increasing network
depth, feature degradation becomes a concern. To address this, we embed the Convolu-
tional Block Attention Module (CBAM) within the RDN. CBAM prioritizes computational
resources for salient features while diminishing attention to less crucial ones, thereby
optimizing image feature extraction.

In conclusion, this study introduces an OFDM (Orthogonal Frequency Division Mul-
tiplexing) cooperative spectrum sensing technique utilizing Residual Dense Networks
and the Convolutional Block Attention Module (RDN–CBAM). This approach involves
converting signal time-domain data into a two-dimensional matrix, which is subsequently
normalized and transformed into a grayscale image. This image is partitioned into training
and test sets. The training set facilitates the neural network’s learning to extract intricate
features from the grayscale image. Ultimately, the test set is fed into the trained neural
network spectrum sensing model, recasting the spectrum sensing challenge as an image
classification task.

2. System Model

Spectrum sensing is the process through which secondary users perceive whether
primary users are present in a specific channel. Thus, spectrum sensing can be transformed
into a classic binary hypothesis testing problem. It respectively corresponds to the non-
existence and existence of the primary user, so this problem can be expressed as follows:{

H1 : y(n) = x(n) + w(n)
H0 : y(n) = w(n)

, (1)

In the formula, H1 and H0, respectively, represent the hypotheses for spectrum occu-
pancy and idleness. y(n) represents the received signal, x(n) represents the transmitted
signal from the primary user, and w(n) is the Gaussian noise with a mean of 0 and variance
of σ2. Pd and Pf a, respectively, represent the probabilities of detection and false alarm.
This paper will use these two metrics to evaluate the performance of the spectrum sensing
model. Pd and Pf a can be expressed as:

Pd = P{H1|H1}, (2)
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Pf a = P{H1|H0}, (3)

3. Spectrum Sensing Algorithm Based on RDN–CBAM for OFDM

The process of the spectrum sensing method in this paper consists of three parts: data
processing, model training, and spectrum sensing, as shown in Figure 1.
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3.1. Data Processing

Due to the differences in the overall distribution of sampling point values for unautho-
rized users under H1 and H0 conditions, the brightness presented by the grayscale image
is also different. Utilizing this difference, the received signals are sampled, and the matrix
after sampling is normalized and processed into grayscale images. The received signals are
represented as:

y(n) = I(n) + jQ(n), n = 1, 2, . . . , N (4)

In the equation, I(n) and Q(n), respectively, represent the I-path and Q-path signals
received by the SU. The Q-path signal is intentionally modulated during transmission; thus,
this paper only uses the I-path signal to construct the dataset. The normalized I-path signal,
denoted as I(n), is obtained as follows:

I(n) =
I(n)− Imin
Imax − Imin

, (5)

The matrix XI is constructed by sequentially stacking I(n) signals, and its expression
is given by:

XI =


I(1) I(2) · · · I(w)

I(w + 1) I(w + 2) · · · I(2w)
...

I(k− 1)(w + 1)

...
I(k− 2)(w + 2)

. . .
· · ·

...
I(kw)

, (6)
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Here, w and k represent the number of rows and columns in the matrix, respectively.
The matrix XIM is constructed by stacking XI , and the formula is given by:

XIM =


XI1
XI2

...
XIM

, (7)

where M represents the number of secondary users. By mapping the values in matrix XIM
to the grayscale values of the grayscale image, it is transformed into a grayscale image, as
shown in Figure 2.
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3.2. Residual Connection

Residual connections are utilized to address the issues of gradient vanishing and
network degradation in deep neural networks. Their introduction aimed to overcome
the difficulties in training deep networks, allowing information to bypass several layers
directly within the network, thereby retaining and transmitting more useful information.

In traditional CNNs, information is passed through each level layer by layer, going
through a series of transformations and non-linear activation functions to eventually
produce an output. However, when the network is exceptionally deep, information may
gradually vanish or get lost after passing through numerous transformations, leading
to a decrease in network performance. This is because the gradient may become very
small during backpropagation, making it challenging to update the weights. Furthermore,
increasing the number of network layers can potentially make the training process unstable.

The introduction of residual connections can solve this problem. Specifically, they add
a direct connection between the input and output at each level. This connection allows
information to pass directly through the network, bypassing the transformation process of
some layers. By adding the input directly to the output, the network can retain the original
information and adjust and correct it in subsequent layers.

Mathematically, residual connections can be represented as:

y(n) = f (x) + x, (8)

where x is the input, f (x) represents the residual mapping of the feature map, and y(n) is
the output. By adding such residual connections, it can be ensured that even in the deep
parts of the network, the gradient can still propagate directly to the early layers, thereby
avoiding the vanishing gradient problem.
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3.3. Dense Connections

Densely connected structures are utilized to enhance feature propagation and infor-
mation flow in neural networks. Compared to the traditional layer-by-layer connections
of conventional CNNs, densely connected structures establish direct connections with all
previous layers at every level, enabling global information exchange and feature reuse.

In traditional CNNs, the input of each layer is only connected to the output of the
previous layer, and information needs to be passed on layer by layer to reach subsequent
levels. This connection method may lead to the gradual reduction or loss of information
during transmission, limiting the network’s learning and representation capabilities.

This issue can be addressed with dense connections. In the output of each layer, the
outputs of all preceding layers are connected. This implies that the input of each layer
consists of the outputs from all previous layers, forming a densely connected pattern. This
type of connection allows information to freely flow and propagate within the network,
permitting features from lower layers to directly participate in the decision-making of
higher layers.

Dense connections can be represented as:

y = H([x1, x2, x3, . . . , xn−1, xn]), (9)

In this equation, x represents the input, y represents the output of the layer, H(·)
denotes the mapping of the feature map, and [·] square brackets signify the concatenation
of multiple inputs.

Through dense connections, each layer can directly access the information from all
previous layers, thereby enabling global interaction and sharing of features. This global in-
formation transmission aids the network in better learning feature representations, thereby
enhancing the network’s expressive power and learning capability.

3.4. Residual Dense Network

RDN is a deep convolutional neural network used for image super-resolution recon-
struction, adopting the structure of residual connections and dense connections.

In traditional convolutional neural networks, the input of each layer is the output
of the previous layer. However, this might lead to issues such as gradient vanishing and
gradient explosion. To address this issue, residual connections are introduced into RDN.
Residual connections add the input to the output within each residual block, allowing the
network within each block to learn the difference between the input and the output. This
makes the training more stable and enables a deeper network depth.

On the other hand, dense connections link the input and output of each block, allowing
the network to utilize all information from previous layers for training. This enhances
the network’s feature extraction ability and alleviates the gradient vanishing problem.
Therefore, RDN can effectively increase network depth and achieve better performance.

The basic units of the RDN, the Residual Dense Block (RDB), are composed of the
structure of residual connections and dense connections, which contains a composite
function with batch Normalization (BN), ReLU, Conv, and other operations. The d-th RDB
is shown in Figure 3.
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3.5. Convolutional Block Attention Module (CBAM)

CBAM is a module used to enhance the performance of convolutional neural networks.
The CBAM module combines two attention mechanisms, the channel attention mechanism,
and spatial attention mechanism, aiming to capture the inter-channel relationships and
spatial correlations in the input feature map, thereby improving the expressiveness and
generalization ability of the model.

The basic structure of the CBAM module includes two sub-modules: channel attention
module and spatial attention module. The channel attention module is used to capture the
correlations among different channels in the input feature map. It performs average pooling
and max pooling along the spatial dimension of the feature map, then concatenates their
results into a fully connected layer to generate a channel attention vector. This vector is used
to weight each channel, enhancing the important channel information while suppressing
the useless channel information. The formula for the channel attention mechanism is
as follows:

Mc(F) = σ
{

MLP[ avgpool(F)] + MLP[maxpool{F}]} = σ
{

W1

[
W0

(
Fc

avg

)
+ W1[Fc

max]
]}

, (10)

where Fc
avg and Fc

max, respectively, represent the feature maps outputted by the average
pooling operation and the maximum pooling operation of the channel attention mechanism.
W1 and W0 denote the weights of the multi-layer perceptron, while σ signifies the sigmoid
function. Mc(F) represents the output of the channel attention mechanism.

The Spatial Attention Module is utilized to capture the correlation between different
spatial positions within the input feature maps. It conducts both average pooling and
maximum pooling along the channel dimension of the feature maps, then concatenates
their results into a fully connected layer, generating a spatial attention vector. This vec-
tor is applied to weight each spatial position, enhancing relevant position information
and suppressing irrelevant position information. The formula for the spatial attention
mechanism is:

Ms(F) = σ
(

f 7×7{[avgpool(F); maxpool{F}]}
)
= σ

{
f 7×7

[(
Fs

avg; Fs
max

)]}
(11)

where Fs
avg and Fs

max represent the feature maps outputted by the average pooling operation
and the maximum pooling operation of the spatial attention mechanism, respectively. The
symbol f 7×7 denotes the size of the convolution kernel, while Ms(F) stands for the output
of the spatial attention mechanism.

The CBAM module combines channel attention and spatial attention to create a com-
prehensive attention map. This takes into account both the inter-channel relationships and
spatial correlations of the input feature maps, thereby enhancing the model’s expressiveness
and generalization ability. The structure of the CBAM is shown in Figure 4.
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(Fully Connected) layers, and classification labels. The structure of the ResDenNet-CBAM
spectrum sensing model is shown in Figure 5.
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In this paper, the internal convolution kernel size of the RDB is set to 1 × 1, and the
Conv has a kernel size of 3 × 3 with 8 kernels in each layer.

In the RDN–CBAM spectrum sensing algorithm, we select n pairs of data{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
as the training set and m pairs of data{(

x(n+1), y(n+1)
)

, . . . ,
(

x(n+m), y(n+m)
)}

as the testing set, where x(·) represents the grayscale

image of the received signal and y(·) represents the label value of the received signal. The
input-output mapping relationship in this algorithm is given by:

fw,b

(
x(n)

)
= ŷ(n), (12)

where w and b are the trained weights and biases in the network, ŷ(n) representing the
output mapping of x(n) after passing through the network.

The loss function for training RDN–CBAM is represented as:

Loss = −∑2
i=1 y(n)(i)log

(
ŷ(n)(i)

)
, (13)

The proposed RDN–CBAM spectrum sensing algorithm is shown in Algorithm 1.

Algorithm 1. Spectrum Sensing Algorithm of RDN–CBAM.

1: Input: training and test set sample data
Output: detection probability and false alarm probability

2: Input the training set samples
{(

x(1), y(1)
)

, . . . ,
(

x(n), y(n)
)}

.

3: The predicted label ŷ(n) is updated according to Equation (10); Backpropagation is performed
to update the loss based on Equation (11) until convergence.
4: Apply the trained RDN–CBAM model to the test data{(

x(n+1), y(n+1)
)

, . . . ,
(

x(n+m), y(n+m)
)}

. Calculate the correct number rPU of PU identification
and the correct number rSU of noise sample identification.
5: Finally, the detection probability Pd = rPU

n and false alarm probability Pf a = rSU
n are calculated.

4. Experimental Analysis
4.1. Experimental Conditions

To validate the performance of the RDN–CBAM spectral perception algorithm, we
conducted the following simulation experiments and specified the parameter settings used
in the experiments. In the simulation experiments, the CPU and GPU used were Intel
Core i7 and NVIDIA GeForce 3060, respectively. We used Matlab 2020a to generate OFDM
signals and selected OFDM signals with signal-to-noise ratios ranging from −20 to 0 dB at
2 dB intervals as experimental data, setting the sampling point N = 256 and the number
of cooperative users M as 20. The parameters for the OFDM signal model are shown in
Table 1. The loss function for model training was a cross-entropy loss function. During
training, the Adam optimization algorithm [24] was used for optimization, with batch size
set to 16 and learning rate set to 0.001.
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Table 1. OFDM parameters.

Simulation Parameters Parameter Value

Number of OFDM symbols 20
Number of subcarriers 128

Symbol rate 12.5 KHz
Cyclic prefix ratio 0.25
Carrier frequency 10 MHz

Sampling frequency 40 MHz
Chip frequency 0.5 MHz

Smoothing points 16

4.2. Experiment 1: Impact of Network Depth on Model Performance

In this section of the experiment, the SNR range of the OFDM signals was −20 to 0 dB,
with intervals of 2 dB. An equal amount of OFDM signal data and noise data were collected
under each SNR condition. For each SNR, 100 sets of data were selected, forming a total
of 1100 sets of signal data and 1100 sets of noise data. To train the model, we randomly
selected 990 sets of signal data and 990 sets of noise data as the training set and chose
110 sets of signal data and 110 sets of noise data as the test set. In the experiment, the
convolutional layer numbers of RDN–CBAM, RDN, and CNN were the same. Figure 6
displays the change in classification accuracy of RDN–CBAM, RDN, and CNN with the
increase in network layers under the spectrum sensing method.
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As shown in Figure 6, when the number of network layers is less than 20, the accuracy
of RDN–CBAM continuously increases, reaching its peak at 20 layers. RDN achieves its
highest accuracy at 16 layers. As the number of layers increases, the accuracy begins to
decline. The accuracy of CNN continues to drop to 50%, while the accuracy of RDN–
CBAM is consistently higher than both RDN and CNN. As the number of network layers
gradually increases, the accuracy of RDN–CBAM slowly drops to around 87%, and RDNs
accuracy decreases to about 83%. Meanwhile, the accuracy of CNN remains steady at 50%.
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The increase in the number of network layers leads to the vanishing gradient problem in
CNN, resulting in a decrease in the model’s accuracy. However, the deep RDN–CBAM
can effectively extract more image features, ensuring its accuracy is consistently higher
than that of RDN. Having excessively deep network layers can also cause a decline in the
performance of RDN–CBAM, as overfitting may occur during training with very deep
RDN–CBAM layers. Yet, the performance degradation is much slower than in RDN. This is
because, as the depth of the network increases, RDN is prone to feature degradation issues.
In conclusion, since RDN–CBAM achieves the highest accuracy when the network has 20
layers, the RDN–CBAM model used in this study has been chosen to have 20 layers.

As shown in Figure 7, when the number of network layers is constant, the accuracy
of the RDN–CBAM spectrum sensing algorithm increases with the rise in the number of
secondary users. This is because as the number of these users increases, the features of
the signal mapped to the grayscale image also increase, thus enhancing the accuracy of
the RDN–CBAM spectrum sensing algorithm. This study selects the spectrum sensing
algorithm with 20 secondary users.
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4.3. Experiment 2: Influence of Residual Structure on Model Gradient

In this experiment, we selected 20 layers as the network depth for RDN–CBAM, RDN,
and CNN, using the same dataset as Experiment 1. As shown in Figures 8 and 9, the loss
for RDN–CBAM eventually stabilizes at around 0.1, which is notably lower than that for
RDN (around 0.25) and CNN (around 0.56). Moreover, the accuracy rate for RDN–CBAM
remains steady at around 0.98, surpassing RDN (around 0.92) and CNN (around 0.53).
RDN–CBAM, equipped with a residual structure and convolutional attention, can prevent
gradient vanishing and enhance feature extraction capabilities, thereby increasing accuracy
and reducing loss. This strongly suggests that incorporating a residual structure into CNN
can effectively address the gradient vanishing problem and enhance network performance.
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4.4. Experiment 3: Comparison of Sensing Efficiency among RDN–CBAM, CNN, and SVM
Spectral Sensing Methods

In the experiment, both RDN–CBAM and CNN used networks of 5 layers (represented
as RDN–CBAM_5L and CNN_5L) and 20 layers (represented as RDN–CBAM_20L and
CNN_20L), with all other parameters being consistent. The training and validation sets
remained the same as in Experiment 1.

Table 2 compares the performance of several different spectral sensing methods in
terms of training time, testing time, and other aspects. From Table 2, it can be observed
that compared to CNN_5L, the training time of RDN–CBAM_5L was reduced by 3.2 s, and
the testing time was reduced by 1.02 s. Compared to CNN_20L, RDN–CBAM_20L had
its training time reduced by 4.56 s and testing time reduced by 1.78 s. The reason behind
this is that the residual connections accelerated the convergence speed of RDN–CBAM,
effectively reducing both training and testing times. Compared to SVM, although the
training time for RDN–CBAM_20L increased by 18.18 s, its testing time was reduced by
6.39 s. This is because RDN–CBAM_20L has more training parameters than SVM, leading
to a longer training period. During the testing phase, RDN–CBAM can directly recognize
and classify received signals, whereas SVM requires retraining of its classifier before it can
identify received signals. Therefore, the testing time for RDN–CBAM is faster. In a real
CR environment, since the best-performing spectral sensing classifier has been pretrained,
it can be directly used for spectral sensing. Hence, testing time becomes particularly
important in practical sensing, demonstrating that the method proposed in this paper is
both efficient and feasible.

Table 2. Pd, Pf a, Training Time, and Sensing Time of Several Algorithms.

Algorithm Training Time/s Sensing Time/s

RDN–CBAM_5L 21.43 2.23
CNN_5L 24.92 2.74

RDN–CBAM_20L 32.75 3.93
CNN_20L 37.31 5.71

SVM 14.57 10.32

From a complexity perspective, let n denote the number of training samples and
m represent the number of unauthorized users. The SVM algorithm needs to compute
matrix eigenvalues and carries out classifications with a complexity of O

(
n3), resulting

in an overall complexity of O
(
nm3 + n3). The complexity of the CNN spectrum sensing

algorithm is O
(

n ∑L
L=1 F2

l K2
l QlQl−1

)
, where L, Fl , Kl , and Ql , respectively, indicate the

number of network layers, the edge length of the feature map output from the lth Conv, the
side length of the convolution kernel, and the number of output channels.

The sole difference in complexity between the RDN–CBAM spectrum sensing algo-
rithm and the CNN algorithm lies in the different number of layers l. The RDN–CBAM
spectrum sensing algorithm can skip one or more Conv layers through shortcut connections.
This allows the l in O

(
n ∑L

L=1 F2
l K2

l QlQl−1

)
to “jump” in selecting the number of layers,

instead of having the complexity l accumulate from the first layer all the way to the lth

layer as in the CNN algorithm. As a result, RDN reduces the parameters required to train
convolution layers, thus decreasing the algorithm’s complexity.

Given that CBAM is a lightweight and versatile module, the overhead of this module
can be neglected, allowing its seamless integration into any CNN architecture. Hence, the
overall complexity of the RDN–CBAM spectrum sensing algorithm can be reduced.

4.5. Experiment 4: Comparison of Spectrum Sensing Performance among Different Models

In our experiment, we compared the detection probabilities of RDN–CBAM, RDN,
CNN, and SVM spectral sensing methods under SNR values ranging from −20 dB to
0 dB. The number of layers chosen for the RDN–CBAM, RDN, and CNN spectral sensing
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models were 20 layers, 16 layers, and 5 layers, respectively, using the same dataset as
Experiment 1. The experimental results, as shown in Figure 10, reveal that when the SNR is
lower than −10 dB, the detection probability of the RDN–CBAM spectral sensing method
consistently surpasses the other methods, including RDN, CNN, and SVM. This is because
the convolutional attention module of RDN–CBAM can extract more useful features and
suppress irrelevant ones, thereby effectively enhancing the model’s detection capabilities.
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We conducted multiple experiments to comprehensively validate the effectiveness
of the RDN–CBAM spectrum sensing method and recorded the Pd and Pf a values in each
experiment compared to the traditional CNN, RDN, and SVM spectrum sensing methods,
obtaining the ROC (Receiver Operating Characteristic) curve. In these experiments, we
used the same dataset as in Experiment 1, taking SNR = −16 dB as an example.

Figure 11 displays the experimental results. We can observe that the RDN–CBAM
spectrum sensing method performed exceptionally well in all experiments. At a false alarm
probability Pf a = 0.05, the detection probabilities for RDN–CBAM, RDN, CNN, and SVM
methods were 0.97, 0.91, 0.87, and 0.71, respectively. The ROC curve for RDN–CBAM is
notably higher than those for the CNN, RDN, and SVM spectrum sensing methods. This
indicates that the RDN–CBAM spectrum sensing method exhibits strong performance in
processing low signal-to-noise ratio signals and can significantly enhance the accuracy and
reliability of spectrum sensing.
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5. Conclusions

To improve the feature extraction capability of traditional CNN spectral perception
methods and to avoid the problem of gradient vanishing in deep network structures, as well
as to address the feature degradation issue when increasing the layers of the RDN network,
we introduce an RDN–CBAM spectral perception approach. This method employs residual
dense blocks and convolutional attention mechanisms to thoroughly extract deep features
of grayscale images. Furthermore, it uses a deep network to train the spectral perception
model to enhance the classification and recognition accuracy of grayscale images, thereby
improving spectral perception performance. Experimental results show that, compared
to spectral perception methods like CNN, RDN, and SVM, our proposed RDN–CBAM
spectral perception approach has a higher detection probability under equal false alarm
rates and a lower false alarm rate under equal detection probabilities. Moreover, there is no
issue of network degradation in deep network structures.

This paper aims to address the shortcomings of traditional CNN models, namely the
vanishing gradient problem and weak feature extraction. Future work will focus on testing
the performance of the proposed model on different modulated signals and comparing it
with more advanced models.
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