
Citation: Wang, A.; Meng, Q.; Wang,

M. Spectrum Sensing Method Based

on Residual Dense Network and

Attention. Sensors 2023, 23, 7791.

https://doi.org/10.3390/s23187791

Academic Editors: Salvatore Serrano

and Scarpa Marco

Received: 2 August 2023

Revised: 6 September 2023

Accepted: 8 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Spectrum Sensing Method Based on Residual Dense Network
and Attention
Anyi Wang, Qifeng Meng and Mingbo Wang *

School of Communication and Information Engineering, Xi’an University of Science and Technology,
Xi’an 710054, China; wanganyi@xust.edu.cn (A.W.); 21207040026@stu.xust.edu.cn (Q.M.)
* Correspondence: lqs_wmb@163.com

Abstract: To address the problems of gradient vanishing and limited feature extraction capability of
traditional CNN spectrum sensing methods in deep network structures and to effectively avoid net-
work degradation issues under deep network structures, this paper proposes a collaborative spectrum
sensing method based on Residual Dense Network and attention mechanisms. This method involves
stacking and normalizing the time-domain information of the signal, constructing a two-dimensional
matrix, and mapping it to a grayscale image. The grayscale images are divided into training and
testing sets, and the training set is used to train the neural network to extract deep features. Finally,
the test set is fed into the well-trained neural network for spectrum sensing. Experimental results
show that, under low signal-to-noise ratios, the proposed method demonstrates superior spectral
sensing performance compared to traditional collaborative spectrum sensing methods.

Keywords: cooperative spectrum sensing; residual dense network; attention mechanism

1. Introduction

In the evolving global economy and advancements in information technology, the de-
mand for spectrum resources within the 5G frequency band is consistently rising. However,
the limited availability of these spectrum resources hampers the high-speed, large-capacity
growth of 5G networks [1] and the swift proliferation of the Internet of Things (IoT) [2].
To optimize the use of these resources, cognitive radio (CR) has been introduced as an
efficacious solution [3]. This technology permits secondary users (SU) to access idle fre-
quency bands without disrupting the operations of primary users (PU), thus significantly
enhancing the utilization of spectrum resources.

Spectrum sensing is a fundamental requirement for enabling dynamic spectrum access
in cognitive radio [4,5]. This technology assists secondary users in swiftly and accurately
identifying and utilizing idle spectrum, thereby enhancing their probability of spectrum
access [6]. The primary categories of spectrum sensing are single-user spectrum sensing
and collaborative spectrum sensing. Reference [7] primarily investigates a spectrum sens-
ing method based on the Kernelized Energy Detector (KED). Compared to the traditional
Energy Detector (ED), this method offers greater accuracy, especially in non-Gaussian noise
environments. Reference [8] focuses on improving the ED in a Laplacian noise setting and
introduces a new test statistic to enhance detection performance. Traditional single-user
spectrum sensing is susceptible to challenges such as a low signal-to-noise ratio (SNR),
pronounced shadow fading, and the presence of hidden terminals. While collaborative
spectrum sensing can mitigate these issues to some degree, it often grapples with determin-
ing an appropriate threshold value in real-world settings. Recent studies have explored
spectrum sensing through machine-learning techniques. Unlike traditional methods, these
algorithms eliminate the need for intricate threshold derivations and can efficiently clas-
sify and recognize signals after classifier training. For instance, literature [9] employed a
support vector machine (SVM) trained on signal energy vector features. However, this
approach exhibits subpar detection performance in low SNR conditions, and training the

Sensors 2023, 23, 7791. https://doi.org/10.3390/s23187791 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3984-7156
https://doi.org/10.3390/s23187791
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187791?type=check_update&version=2

Sensors 2023, 23, 7791 2 of 14

SVM is notably time-consuming. Deep learning [10,11] has been extensively applied in
image processing [12,13], speech recognition [14], natural language processing [15], and
radio signal classification [16–18]. Additionally, deep learning has also found applications
in the medical field [19,20]. Convolutional neural networks (CNNs) are effective tools for
extracting target features and offer superior performance in 2D image feature extraction
compared to other machine learning algorithms. In the study presented in [21], signal recog-
nition is achieved by normalizing the cyclic spectrum of OFDM (Orthogonal Frequency
Division Multiplexing) signals to grayscale, creating a cyclic autocorrelation grayscale
image, and subsequently training a CNN. However, this approach is limited to single-user
spectrum sensing. Another study [22] introduces a spectrum sensing technique that utilizes
the signal covariance matrix. This method involves converting the covariance matrix into a
grayscale image and feeding it into the CNN model for spectrum sensing. Nevertheless,
the capacity of the CNN model to extract features is constrained. Additionally, as the
depth of the model increases, CNNs may encounter the gradient vanishing issue, leading
to suboptimal accuracy in spectrum sensing.

The Residual Neural Network (ResNet) [23] effectively addresses the gradient van-
ishing issue and mitigates overfitting through the incorporation of shortcut connections
within the CNN architecture. This allows for the expansion of network layers. Nevertheless,
ResNet does not fully harness the information from the output of each layer within the
residual block, nor does it acknowledge the interrelation between distinct convolutional
layers. By seamlessly integrating dense connections into ResNet and ensuring that all
neurons from one layer connect with the subsequent layer, we enhance the interchange of
feature extraction information between any pair of convolutional layers. This led to the
introduction of the Residual Dense Network (RDN). However, with increasing network
depth, feature degradation becomes a concern. To address this, we embed the Convolu-
tional Block Attention Module (CBAM) within the RDN. CBAM prioritizes computational
resources for salient features while diminishing attention to less crucial ones, thereby
optimizing image feature extraction.

In conclusion, this study introduces an OFDM (Orthogonal Frequency Division Mul-
tiplexing) cooperative spectrum sensing technique utilizing Residual Dense Networks
and the Convolutional Block Attention Module (RDN–CBAM). This approach involves
converting signal time-domain data into a two-dimensional matrix, which is subsequently
normalized and transformed into a grayscale image. This image is partitioned into training
and test sets. The training set facilitates the neural network’s learning to extract intricate
features from the grayscale image. Ultimately, the test set is fed into the trained neural
network spectrum sensing model, recasting the spectrum sensing challenge as an image
classification task.

2. System Model

Spectrum sensing is the process through which secondary users perceive whether
primary users are present in a specific channel. Thus, spectrum sensing can be transformed
into a classic binary hypothesis testing problem. It respectively corresponds to the non-
existence and existence of the primary user, so this problem can be expressed as follows:{

H1 : y(n) = x(n) + w(n)
H0 : y(n) = w(n)

, (1)

In the formula, H1 and H0, respectively, represent the hypotheses for spectrum occu-
pancy and idleness. y(n) represents the received signal, x(n) represents the transmitted
signal from the primary user, and w(n) is the Gaussian noise with a mean of 0 and variance
of σ2. Pd and Pf a, respectively, represent the probabilities of detection and false alarm.
This paper will use these two metrics to evaluate the performance of the spectrum sensing
model. Pd and Pf a can be expressed as:

Pd = P{H1|H1}, (2)

Sensors 2023, 23, 7791 3 of 14

Pf a = P{H1|H0}, (3)

3. Spectrum Sensing Algorithm Based on RDN–CBAM for OFDM

The process of the spectrum sensing method in this paper consists of three parts: data
processing, model training, and spectrum sensing, as shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14

alarm. This paper will use these two metrics to evaluate the performance of the spectrum
sensing model. 𝑃 and 𝑃 can be expressed as: 𝑃 = 𝑃 𝐻 |𝐻 , (2) 𝑃 = 𝑃 𝐻 |𝐻 , (3)

3. Spectrum Sensing Algorithm Based on RDN–CBAM for OFDM
The process of the spectrum sensing method in this paper consists of three parts: data

processing, model training, and spectrum sensing, as shown in Figure 1.

Wireless signal
The receiver collects

the signals Grayscale image

Training dataset Test dataset

RDN-CBAM

Data processing

Model
training

Spectrum
sening

Figure 1. Framework of the spectrum sensing system.

3.1. Data Processing
Due to the differences in the overall distribution of sampling point values for unau-

thorized users under 𝐻 and 𝐻 conditions, the brightness presented by the grayscale
image is also different. Utilizing this difference, the received signals are sampled, and the
matrix after sampling is normalized and processed into grayscale images. The received
signals are represented as: 𝑦 𝑛 = 𝐼 𝑛 + 𝑗𝑄 𝑛 , 𝑛 = 1,2, … , 𝑁 (4)

In the equation, 𝐼 𝑛 and 𝑄 𝑛 , respectively, represent the I-path and Q-path signals
received by the SU. The Q-path signal is intentionally modulated during transmission;
thus, this paper only uses the I-path signal to construct the dataset. The normalized I-path
signal, denoted as 𝐼 ̅ 𝑛 , is obtained as follows: 𝐼 ̅ 𝑛 = 𝐼 𝑛 − 𝐼𝐼 − 𝐼 , (5)

The matrix 𝑋 ̅ is constructed by sequentially stacking 𝐼 ̅ 𝑛 signals, and its expres-
sion is given by:

𝑋 ̅ = ⎣⎢⎢
⎡ 𝐼 ̅ 1 𝐼 ̅ 2 ⋯ 𝐼 ̅ 𝑤𝐼 ̅ 𝑤 + 1 𝐼 ̅ 𝑤 + 2 ⋯ 𝐼̅ 2𝑤⋮𝐼 ̅ 𝑘 − 1 𝑤 + 1 ⋮𝐼 ̅ 𝑘 − 2 𝑤 + 2 ⋱⋯ ⋮𝐼 ̅ 𝑘𝑤 ⎦⎥⎥

⎤ , (6)

Here, w and k represent the number of rows and columns in the matrix, respectively.
The matrix 𝑋 ̅ is constructed by stacking 𝑋 ̅, and the formula is given by:

Figure 1. Framework of the spectrum sensing system.

3.1. Data Processing

Due to the differences in the overall distribution of sampling point values for unautho-
rized users under H1 and H0 conditions, the brightness presented by the grayscale image
is also different. Utilizing this difference, the received signals are sampled, and the matrix
after sampling is normalized and processed into grayscale images. The received signals are
represented as:

y(n) = I(n) + jQ(n), n = 1, 2, . . . , N (4)

In the equation, I(n) and Q(n), respectively, represent the I-path and Q-path signals
received by the SU. The Q-path signal is intentionally modulated during transmission; thus,
this paper only uses the I-path signal to construct the dataset. The normalized I-path signal,
denoted as I(n), is obtained as follows:

I(n) =
I(n)− Imin
Imax − Imin

, (5)

The matrix XI is constructed by sequentially stacking I(n) signals, and its expression
is given by:

XI =

I(1) I(2) · · · I(w)

I(w + 1) I(w + 2) · · · I(2w)
...

I(k− 1)(w + 1)

...
I(k− 2)(w + 2)

. . .
· · ·

...
I(kw)

, (6)

Sensors 2023, 23, 7791 4 of 14

Here, w and k represent the number of rows and columns in the matrix, respectively.
The matrix XIM is constructed by stacking XI , and the formula is given by:

XIM =

XI1
XI2

...
XIM

, (7)

where M represents the number of secondary users. By mapping the values in matrix XIM
to the grayscale values of the grayscale image, it is transformed into a grayscale image, as
shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 14

𝑋 ̅ = 𝑋𝑋⋮𝑋 , (7)

where M represents the number of secondary users. By mapping the values in matrix 𝑋 ̅
to the grayscale values of the grayscale image, it is transformed into a grayscale image, as
shown in Figure 2.

(a) (b)

Figure 2. (a) 𝐻 grayscale image; (b) 𝐻 grayscale image.

3.2. Residual Connection
Residual connections are utilized to address the issues of gradient vanishing and net-

work degradation in deep neural networks. Their introduction aimed to overcome the
difficulties in training deep networks, allowing information to bypass several layers di-
rectly within the network, thereby retaining and transmitting more useful information.

In traditional CNNs, information is passed through each level layer by layer, going
through a series of transformations and non-linear activation functions to eventually pro-
duce an output. However, when the network is exceptionally deep, information may
gradually vanish or get lost after passing through numerous transformations, leading to
a decrease in network performance. This is because the gradient may become very small
during backpropagation, making it challenging to update the weights. Furthermore, in-
creasing the number of network layers can potentially make the training process unstable.

The introduction of residual connections can solve this problem. Specifically, they
add a direct connection between the input and output at each level. This connection allows
information to pass directly through the network, bypassing the transformation process
of some layers. By adding the input directly to the output, the network can retain the orig-
inal information and adjust and correct it in subsequent layers.

Mathematically, residual connections can be represented as: 𝑦 𝑛 = 𝑓 𝑥 + 𝑥, (8)

where 𝑥 is the input, 𝑓 𝑥 represents the residual mapping of the feature map, and 𝑦 𝑛
is the output. By adding such residual connections, it can be ensured that even in the deep
parts of the network, the gradient can still propagate directly to the early layers, thereby
avoiding the vanishing gradient problem.

3.3. Dense Connections
Densely connected structures are utilized to enhance feature propagation and infor-

mation flow in neural networks. Compared to the traditional layer-by-layer connections
of conventional CNNs, densely connected structures establish direct connections with all
previous layers at every level, enabling global information exchange and feature reuse.

Figure 2. (a) H1 grayscale image; (b) H0 grayscale image.

3.2. Residual Connection

Residual connections are utilized to address the issues of gradient vanishing and
network degradation in deep neural networks. Their introduction aimed to overcome
the difficulties in training deep networks, allowing information to bypass several layers
directly within the network, thereby retaining and transmitting more useful information.

In traditional CNNs, information is passed through each level layer by layer, going
through a series of transformations and non-linear activation functions to eventually
produce an output. However, when the network is exceptionally deep, information may
gradually vanish or get lost after passing through numerous transformations, leading
to a decrease in network performance. This is because the gradient may become very
small during backpropagation, making it challenging to update the weights. Furthermore,
increasing the number of network layers can potentially make the training process unstable.

The introduction of residual connections can solve this problem. Specifically, they add
a direct connection between the input and output at each level. This connection allows
information to pass directly through the network, bypassing the transformation process of
some layers. By adding the input directly to the output, the network can retain the original
information and adjust and correct it in subsequent layers.

Mathematically, residual connections can be represented as:

y(n) = f (x) + x, (8)

where x is the input, f (x) represents the residual mapping of the feature map, and y(n) is
the output. By adding such residual connections, it can be ensured that even in the deep
parts of the network, the gradient can still propagate directly to the early layers, thereby
avoiding the vanishing gradient problem.

Sensors 2023, 23, 7791 5 of 14

3.3. Dense Connections

Densely connected structures are utilized to enhance feature propagation and infor-
mation flow in neural networks. Compared to the traditional layer-by-layer connections
of conventional CNNs, densely connected structures establish direct connections with all
previous layers at every level, enabling global information exchange and feature reuse.

In traditional CNNs, the input of each layer is only connected to the output of the
previous layer, and information needs to be passed on layer by layer to reach subsequent
levels. This connection method may lead to the gradual reduction or loss of information
during transmission, limiting the network’s learning and representation capabilities.

This issue can be addressed with dense connections. In the output of each layer, the
outputs of all preceding layers are connected. This implies that the input of each layer
consists of the outputs from all previous layers, forming a densely connected pattern. This
type of connection allows information to freely flow and propagate within the network,
permitting features from lower layers to directly participate in the decision-making of
higher layers.

Dense connections can be represented as:

y = H([x1, x2, x3, . . . , xn−1, xn]), (9)

In this equation, x represents the input, y represents the output of the layer, H(·)
denotes the mapping of the feature map, and [·] square brackets signify the concatenation
of multiple inputs.

Through dense connections, each layer can directly access the information from all
previous layers, thereby enabling global interaction and sharing of features. This global in-
formation transmission aids the network in better learning feature representations, thereby
enhancing the network’s expressive power and learning capability.

3.4. Residual Dense Network

RDN is a deep convolutional neural network used for image super-resolution recon-
struction, adopting the structure of residual connections and dense connections.

In traditional convolutional neural networks, the input of each layer is the output
of the previous layer. However, this might lead to issues such as gradient vanishing and
gradient explosion. To address this issue, residual connections are introduced into RDN.
Residual connections add the input to the output within each residual block, allowing the
network within each block to learn the difference between the input and the output. This
makes the training more stable and enables a deeper network depth.

On the other hand, dense connections link the input and output of each block, allowing
the network to utilize all information from previous layers for training. This enhances
the network’s feature extraction ability and alleviates the gradient vanishing problem.
Therefore, RDN can effectively increase network depth and achieve better performance.

The basic units of the RDN, the Residual Dense Block (RDB), are composed of the
structure of residual connections and dense connections, which contains a composite
function with batch Normalization (BN), ReLU, Conv, and other operations. The d-th RDB
is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 14

In traditional CNNs, the input of each layer is only connected to the output of the
previous layer, and information needs to be passed on layer by layer to reach subsequent
levels. This connection method may lead to the gradual reduction or loss of information
during transmission, limiting the network’s learning and representation capabilities.

This issue can be addressed with dense connections. In the output of each layer, the
outputs of all preceding layers are connected. This implies that the input of each layer
consists of the outputs from all previous layers, forming a densely connected pattern. This
type of connection allows information to freely flow and propagate within the network,
permitting features from lower layers to directly participate in the decision-making of
higher layers.

Dense connections can be represented as: 𝑦 = 𝐻 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , (9)

In this equation, 𝑥 represents the input, 𝑦 represents the output of the layer, 𝐻 ∙
denotes the mapping of the feature map, and ∙ square brackets signify the concatenation
of multiple inputs.

Through dense connections, each layer can directly access the information from all
previous layers, thereby enabling global interaction and sharing of features. This global
information transmission aids the network in better learning feature representations,
thereby enhancing the network’s expressive power and learning capability.

3.4. Residual Dense Network
RDN is a deep convolutional neural network used for image super-resolution recon-

struction, adopting the structure of residual connections and dense connections.
In traditional convolutional neural networks, the input of each layer is the output of

the previous layer. However, this might lead to issues such as gradient vanishing and
gradient explosion. To address this issue, residual connections are introduced into RDN.
Residual connections add the input to the output within each residual block, allowing the
network within each block to learn the difference between the input and the output. This
makes the training more stable and enables a deeper network depth.

On the other hand, dense connections link the input and output of each block, allow-
ing the network to utilize all information from previous layers for training. This enhances
the network’s feature extraction ability and alleviates the gradient vanishing problem.
Therefore, RDN can effectively increase network depth and achieve better performance.

The basic units of the RDN, the Residual Dense Block (RDB), are composed of the
structure of residual connections and dense connections, which contains a composite
function with batch Normalization (BN), ReLU, Conv, and other operations. The d-th RDB
is shown in Figure 3.

Conv
ReLu

Conv
ReLu

Conv
ReLu

dF1−dF

Figure 3. RDB structure diagram.

3.5. Convolutional Block Attention Module (CBAM)
CBAM is a module used to enhance the performance of convolutional neural net-

works. The CBAM module combines two attention mechanisms, the channel attention

Figure 3. RDB structure diagram.

Sensors 2023, 23, 7791 6 of 14

3.5. Convolutional Block Attention Module (CBAM)

CBAM is a module used to enhance the performance of convolutional neural networks.
The CBAM module combines two attention mechanisms, the channel attention mechanism,
and spatial attention mechanism, aiming to capture the inter-channel relationships and
spatial correlations in the input feature map, thereby improving the expressiveness and
generalization ability of the model.

The basic structure of the CBAM module includes two sub-modules: channel attention
module and spatial attention module. The channel attention module is used to capture the
correlations among different channels in the input feature map. It performs average pooling
and max pooling along the spatial dimension of the feature map, then concatenates their
results into a fully connected layer to generate a channel attention vector. This vector is used
to weight each channel, enhancing the important channel information while suppressing
the useless channel information. The formula for the channel attention mechanism is
as follows:

Mc(F) = σ
{

MLP[avgpool(F)] + MLP[maxpool{F}]} = σ
{

W1

[
W0

(
Fc

avg

)
+ W1[Fc

max]
]}

, (10)

where Fc
avg and Fc

max, respectively, represent the feature maps outputted by the average
pooling operation and the maximum pooling operation of the channel attention mechanism.
W1 and W0 denote the weights of the multi-layer perceptron, while σ signifies the sigmoid
function. Mc(F) represents the output of the channel attention mechanism.

The Spatial Attention Module is utilized to capture the correlation between different
spatial positions within the input feature maps. It conducts both average pooling and
maximum pooling along the channel dimension of the feature maps, then concatenates
their results into a fully connected layer, generating a spatial attention vector. This vec-
tor is applied to weight each spatial position, enhancing relevant position information
and suppressing irrelevant position information. The formula for the spatial attention
mechanism is:

Ms(F) = σ
(

f 7×7{[avgpool(F); maxpool{F}]}
)
= σ

{
f 7×7

[(
Fs

avg; Fs
max

)]}
(11)

where Fs
avg and Fs

max represent the feature maps outputted by the average pooling operation
and the maximum pooling operation of the spatial attention mechanism, respectively. The
symbol f 7×7 denotes the size of the convolution kernel, while Ms(F) stands for the output
of the spatial attention mechanism.

The CBAM module combines channel attention and spatial attention to create a com-
prehensive attention map. This takes into account both the inter-channel relationships and
spatial correlations of the input feature maps, thereby enhancing the model’s expressiveness
and generalization ability. The structure of the CBAM is shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 14

mechanism, and spatial attention mechanism, aiming to capture the inter-channel rela-
tionships and spatial correlations in the input feature map, thereby improving the expres-
siveness and generalization ability of the model.

The basic structure of the CBAM module includes two sub-modules: channel atten-
tion module and spatial attention module. The channel attention module is used to cap-
ture the correlations among different channels in the input feature map. It performs aver-
age pooling and max pooling along the spatial dimension of the feature map, then concat-
enates their results into a fully connected layer to generate a channel attention vector. This
vector is used to weight each channel, enhancing the important channel information while
suppressing the useless channel information. The formula for the channel attention mech-
anism is as follows: 𝑀 𝐹 = σ 𝑀𝐿𝑃 𝑎𝑣𝑔𝑝𝑜𝑜𝑙 𝐹 + 𝑀𝐿𝑃 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 𝐹 = σ 𝑊 𝑊 𝐹 +𝑊 𝐹 ,

(10)

where 𝐹 and 𝐹 , respectively, represent the feature maps outputted by the average
pooling operation and the maximum pooling operation of the channel attention mecha-
nism. 𝑊 and 𝑊 denote the weights of the multi-layer perceptron, while σ signifies the
sigmoid function. 𝑀 𝐹 represents the output of the channel attention mechanism.

The Spatial Attention Module is utilized to capture the correlation between different
spatial positions within the input feature maps. It conducts both average pooling and
maximum pooling along the channel dimension of the feature maps, then concatenates
their results into a fully connected layer, generating a spatial attention vector. This vector
is applied to weight each spatial position, enhancing relevant position information and
suppressing irrelevant position information. The formula for the spatial attention mecha-
nism is: 𝑀 𝐹 = σ 𝑓 × 𝑎𝑣𝑔𝑝𝑜𝑜𝑙 𝐹 ; 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 𝐹 = σ 𝑓 × 𝐹 ; 𝐹 (11)

where 𝐹 and 𝐹 represent the feature maps outputted by the average pooling oper-
ation and the maximum pooling operation of the spatial attention mechanism, respec-
tively. The symbol 𝑓 × denotes the size of the convolution kernel, while 𝑀 𝐹 stands
for the output of the spatial attention mechanism.

The CBAM module combines channel attention and spatial attention to create a com-
prehensive attention map. This takes into account both the inter-channel relationships and
spatial correlations of the input feature maps, thereby enhancing the model’s expressive-
ness and generalization ability. The structure of the CBAM is shown in Figure 4.

channel attention

CM SM

spatial attention

'F ''F

Figure 4. CBAM structure diagram.

The proposed deep RDN–CBAM spectrum sensing model in this paper consists of
an input layer, a shallow feature extraction layer (Conv), multiple RDB modules, CBAM,
FC (Fully Connected) layers, and classification labels. The structure of the ResDenNet-
CBAM spectrum sensing model is shown in Figure 5.

Figure 4. CBAM structure diagram.

The proposed deep RDN–CBAM spectrum sensing model in this paper consists of an
input layer, a shallow feature extraction layer (Conv), multiple RDB modules, CBAM, FC

Sensors 2023, 23, 7791 7 of 14

(Fully Connected) layers, and classification labels. The structure of the ResDenNet-CBAM
spectrum sensing model is shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

Grayscale image Conv RDB,1 RDB,n CBAM FC Classification tag

Figure 5. CBAM structure diagram ResDenNet-CBAM spectrum sensing model.

In this paper, the internal convolution kernel size of the RDB is set to 1 × 1, and the
Conv has a kernel size of 3 × 3 with 8 kernels in each layer.

In the RDN–CBAM spectrum sensing algorithm, we select n pairs of data 𝑥 , 𝑦 , … , 𝑥 , 𝑦 as the training set and m pairs of data 𝑥 , 𝑦 , … , 𝑥 , 𝑦 as the testing set, where 𝑥 ∙ represents the gray-
scale image of the received signal and 𝑦 ∙ represents the label value of the received sig-
nal. The input-output mapping relationship in this algorithm is given by: 𝑓 , 𝑥 = 𝑦 , (12)

where w and b are the trained weights and biases in the network, 𝑦 representing the
output mapping of 𝑥 after passing through the network.

The loss function for training RDN–CBAM is represented as: 𝐿𝑜𝑠𝑠 = − ∑ 𝑦 𝑖 𝑙𝑜𝑔 𝑦 𝑖 , (13)

The proposed RDN–CBAM spectrum sensing algorithm is shown in Algorithm 1.

Algorithm 1. Spectrum Sensing Algorithm of RDN–CBAM.
1: Input: training and test set sample data
Output: detection probability and false alarm probability
2: Input the training set samples 𝑥 , 𝑦 , … , 𝑥 , 𝑦 .
3: The predicted label 𝑦 is updated according to Equation (10); Backpropagation is
performed to update the loss based on Equation (11) until convergence.
4: Apply the trained RDN–CBAM model to the test data 𝑥 , 𝑦 , … , 𝑥 , 𝑦 . Calculate the correct number 𝑟 of PU identifica-
tion and the correct number 𝑟 of noise sample identification.
5: Finally, the detection probability 𝑃 = and false alarm probability 𝑃 = are
calculated.

4. Experimental Analysis
4.1. Experimental Conditions

To validate the performance of the RDN–CBAM spectral perception algorithm, we
conducted the following simulation experiments and specified the parameter settings
used in the experiments. In the simulation experiments, the CPU and GPU used were Intel
Core i7 and NVIDIA GeForce 3060, respectively. We used Matlab 2020a to generate OFDM
signals and selected OFDM signals with signal-to-noise ratios ranging from −20 to 0 dB at
2 dB intervals as experimental data, setting the sampling point N = 256 and the number of
cooperative users M as 20. The parameters for the OFDM signal model are shown in Table
1. The loss function for model training was a cross-entropy loss function. During training,
the Adam optimization algorithm [24] was used for optimization, with batch size set to 16
and learning rate set to 0.001.

Table 1. OFDM parameters.

Simulation Parameters Parameter Value
Number of OFDM symbols 20

Number of subcarriers 128
Symbol rate 12.5 KHz

Cyclic prefix ratio 0.25

Figure 5. CBAM structure diagram ResDenNet-CBAM spectrum sensing model.

In this paper, the internal convolution kernel size of the RDB is set to 1 × 1, and the
Conv has a kernel size of 3 × 3 with 8 kernels in each layer.

In the RDN–CBAM spectrum sensing algorithm, we select n pairs of data{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
as the training set and m pairs of data{(

x(n+1), y(n+1)
)

, . . . ,
(

x(n+m), y(n+m)
)}

as the testing set, where x(·) represents the grayscale

image of the received signal and y(·) represents the label value of the received signal. The
input-output mapping relationship in this algorithm is given by:

fw,b

(
x(n)

)
= ŷ(n), (12)

where w and b are the trained weights and biases in the network, ŷ(n) representing the
output mapping of x(n) after passing through the network.

The loss function for training RDN–CBAM is represented as:

Loss = −∑2
i=1 y(n)(i)log

(
ŷ(n)(i)

)
, (13)

The proposed RDN–CBAM spectrum sensing algorithm is shown in Algorithm 1.

Algorithm 1. Spectrum Sensing Algorithm of RDN–CBAM.

1: Input: training and test set sample data
Output: detection probability and false alarm probability

2: Input the training set samples
{(

x(1), y(1)
)

, . . . ,
(

x(n), y(n)
)}

.

3: The predicted label ŷ(n) is updated according to Equation (10); Backpropagation is performed
to update the loss based on Equation (11) until convergence.
4: Apply the trained RDN–CBAM model to the test data{(

x(n+1), y(n+1)
)

, . . . ,
(

x(n+m), y(n+m)
)}

. Calculate the correct number rPU of PU identification
and the correct number rSU of noise sample identification.
5: Finally, the detection probability Pd = rPU

n and false alarm probability Pf a = rSU
n are calculated.

4. Experimental Analysis
4.1. Experimental Conditions

To validate the performance of the RDN–CBAM spectral perception algorithm, we
conducted the following simulation experiments and specified the parameter settings used
in the experiments. In the simulation experiments, the CPU and GPU used were Intel
Core i7 and NVIDIA GeForce 3060, respectively. We used Matlab 2020a to generate OFDM
signals and selected OFDM signals with signal-to-noise ratios ranging from −20 to 0 dB at
2 dB intervals as experimental data, setting the sampling point N = 256 and the number
of cooperative users M as 20. The parameters for the OFDM signal model are shown in
Table 1. The loss function for model training was a cross-entropy loss function. During
training, the Adam optimization algorithm [24] was used for optimization, with batch size
set to 16 and learning rate set to 0.001.

Sensors 2023, 23, 7791 8 of 14

Table 1. OFDM parameters.

Simulation Parameters Parameter Value

Number of OFDM symbols 20
Number of subcarriers 128

Symbol rate 12.5 KHz
Cyclic prefix ratio 0.25
Carrier frequency 10 MHz

Sampling frequency 40 MHz
Chip frequency 0.5 MHz

Smoothing points 16

4.2. Experiment 1: Impact of Network Depth on Model Performance

In this section of the experiment, the SNR range of the OFDM signals was −20 to 0 dB,
with intervals of 2 dB. An equal amount of OFDM signal data and noise data were collected
under each SNR condition. For each SNR, 100 sets of data were selected, forming a total
of 1100 sets of signal data and 1100 sets of noise data. To train the model, we randomly
selected 990 sets of signal data and 990 sets of noise data as the training set and chose
110 sets of signal data and 110 sets of noise data as the test set. In the experiment, the
convolutional layer numbers of RDN–CBAM, RDN, and CNN were the same. Figure 6
displays the change in classification accuracy of RDN–CBAM, RDN, and CNN with the
increase in network layers under the spectrum sensing method.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14

Carrier frequency 10 MHz
Sampling frequency 40 MHz

Chip frequency 0.5 MHz
Smoothing points 16

4.2. Experiment 1: Impact of Network Depth on Model Performance
In this section of the experiment, the SNR range of the OFDM signals was −20 to 0

dB, with intervals of 2 dB. An equal amount of OFDM signal data and noise data were
collected under each SNR condition. For each SNR, 100 sets of data were selected, forming
a total of 1100 sets of signal data and 1100 sets of noise data. To train the model, we ran-
domly selected 990 sets of signal data and 990 sets of noise data as the training set and
chose 110 sets of signal data and 110 sets of noise data as the test set. In the experiment,
the convolutional layer numbers of RDN–CBAM, RDN, and CNN were the same. Figure
6 displays the change in classification accuracy of RDN–CBAM, RDN, and CNN with the
increase in network layers under the spectrum sensing method.

Figure 6. RDN–CBAM, RDN, and CNN accuracy change with the number of network layers.

As shown in Figure 6, when the number of network layers is less than 20, the accuracy
of RDN–CBAM continuously increases, reaching its peak at 20 layers. RDN achieves its
highest accuracy at 16 layers. As the number of layers increases, the accuracy begins to
decline. The accuracy of CNN continues to drop to 50%, while the accuracy of RDN–
CBAM is consistently higher than both RDN and CNN. As the number of network layers
gradually increases, the accuracy of RDN–CBAM slowly drops to around 87%, and RDNs
accuracy decreases to about 83%. Meanwhile, the accuracy of CNN remains steady at 50%.
The increase in the number of network layers leads to the vanishing gradient problem in
CNN, resulting in a decrease in the model’s accuracy. However, the deep RDN–CBAM
can effectively extract more image features, ensuring its accuracy is consistently higher
than that of RDN. Having excessively deep network layers can also cause a decline in the
performance of RDN–CBAM, as overfitting may occur during training with very deep

Figure 6. RDN–CBAM, RDN, and CNN accuracy change with the number of network layers.

As shown in Figure 6, when the number of network layers is less than 20, the accuracy
of RDN–CBAM continuously increases, reaching its peak at 20 layers. RDN achieves its
highest accuracy at 16 layers. As the number of layers increases, the accuracy begins to
decline. The accuracy of CNN continues to drop to 50%, while the accuracy of RDN–
CBAM is consistently higher than both RDN and CNN. As the number of network layers
gradually increases, the accuracy of RDN–CBAM slowly drops to around 87%, and RDNs
accuracy decreases to about 83%. Meanwhile, the accuracy of CNN remains steady at 50%.

Sensors 2023, 23, 7791 9 of 14

The increase in the number of network layers leads to the vanishing gradient problem in
CNN, resulting in a decrease in the model’s accuracy. However, the deep RDN–CBAM
can effectively extract more image features, ensuring its accuracy is consistently higher
than that of RDN. Having excessively deep network layers can also cause a decline in the
performance of RDN–CBAM, as overfitting may occur during training with very deep
RDN–CBAM layers. Yet, the performance degradation is much slower than in RDN. This is
because, as the depth of the network increases, RDN is prone to feature degradation issues.
In conclusion, since RDN–CBAM achieves the highest accuracy when the network has 20
layers, the RDN–CBAM model used in this study has been chosen to have 20 layers.

As shown in Figure 7, when the number of network layers is constant, the accuracy
of the RDN–CBAM spectrum sensing algorithm increases with the rise in the number of
secondary users. This is because as the number of these users increases, the features of
the signal mapped to the grayscale image also increase, thus enhancing the accuracy of
the RDN–CBAM spectrum sensing algorithm. This study selects the spectrum sensing
algorithm with 20 secondary users.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 14

RDN–CBAM layers. Yet, the performance degradation is much slower than in RDN. This
is because, as the depth of the network increases, RDN is prone to feature degradation
issues. In conclusion, since RDN–CBAM achieves the highest accuracy when the network
has 20 layers, the RDN–CBAM model used in this study has been chosen to have 20 layers.

As shown in Figure 7, when the number of network layers is constant, the accuracy
of the RDN–CBAM spectrum sensing algorithm increases with the rise in the number of
secondary users. This is because as the number of these users increases, the features of the
signal mapped to the grayscale image also increase, thus enhancing the accuracy of the
RDN–CBAM spectrum sensing algorithm. This study selects the spectrum sensing algo-
rithm with 20 secondary users.

Figure 7. Influence of the number of secondary users on the accuracy of RDN–CBAM spectrum
sensing algorithm with different layers.

4.3. Experiment 2: Influence of Residual Structure on Model Gradient
In this experiment, we selected 20 layers as the network depth for RDN–CBAM,

RDN, and CNN, using the same dataset as Experiment 1. As shown in Figures 8 and 9,
the loss for RDN–CBAM eventually stabilizes at around 0.1, which is notably lower than
that for RDN (around 0.25) and CNN (around 0.56). Moreover, the accuracy rate for RDN–
CBAM remains steady at around 0.98, surpassing RDN (around 0.92) and CNN (around
0.53). RDN–CBAM, equipped with a residual structure and convolutional attention, can
prevent gradient vanishing and enhance feature extraction capabilities, thereby increasing
accuracy and reducing loss. This strongly suggests that incorporating a residual structure
into CNN can effectively address the gradient vanishing problem and enhance network
performance.

Figure 7. Influence of the number of secondary users on the accuracy of RDN–CBAM spectrum
sensing algorithm with different layers.

4.3. Experiment 2: Influence of Residual Structure on Model Gradient

In this experiment, we selected 20 layers as the network depth for RDN–CBAM, RDN,
and CNN, using the same dataset as Experiment 1. As shown in Figures 8 and 9, the loss
for RDN–CBAM eventually stabilizes at around 0.1, which is notably lower than that for
RDN (around 0.25) and CNN (around 0.56). Moreover, the accuracy rate for RDN–CBAM
remains steady at around 0.98, surpassing RDN (around 0.92) and CNN (around 0.53).
RDN–CBAM, equipped with a residual structure and convolutional attention, can prevent
gradient vanishing and enhance feature extraction capabilities, thereby increasing accuracy
and reducing loss. This strongly suggests that incorporating a residual structure into CNN
can effectively address the gradient vanishing problem and enhance network performance.

Sensors 2023, 23, 7791 10 of 14Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 8. RDN–CBAM, RDN, and CNN loss change with the number of iterations.

Figure 9. The change of accuracy rate of RDN–CBAM, RDN, and CNN with the number of itera-
tions.

Figure 8. RDN–CBAM, RDN, and CNN loss change with the number of iterations.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 8. RDN–CBAM, RDN, and CNN loss change with the number of iterations.

Figure 9. The change of accuracy rate of RDN–CBAM, RDN, and CNN with the number of itera-
tions.

Figure 9. The change of accuracy rate of RDN–CBAM, RDN, and CNN with the number of iterations.

Sensors 2023, 23, 7791 11 of 14

4.4. Experiment 3: Comparison of Sensing Efficiency among RDN–CBAM, CNN, and SVM
Spectral Sensing Methods

In the experiment, both RDN–CBAM and CNN used networks of 5 layers (represented
as RDN–CBAM_5L and CNN_5L) and 20 layers (represented as RDN–CBAM_20L and
CNN_20L), with all other parameters being consistent. The training and validation sets
remained the same as in Experiment 1.

Table 2 compares the performance of several different spectral sensing methods in
terms of training time, testing time, and other aspects. From Table 2, it can be observed
that compared to CNN_5L, the training time of RDN–CBAM_5L was reduced by 3.2 s, and
the testing time was reduced by 1.02 s. Compared to CNN_20L, RDN–CBAM_20L had
its training time reduced by 4.56 s and testing time reduced by 1.78 s. The reason behind
this is that the residual connections accelerated the convergence speed of RDN–CBAM,
effectively reducing both training and testing times. Compared to SVM, although the
training time for RDN–CBAM_20L increased by 18.18 s, its testing time was reduced by
6.39 s. This is because RDN–CBAM_20L has more training parameters than SVM, leading
to a longer training period. During the testing phase, RDN–CBAM can directly recognize
and classify received signals, whereas SVM requires retraining of its classifier before it can
identify received signals. Therefore, the testing time for RDN–CBAM is faster. In a real
CR environment, since the best-performing spectral sensing classifier has been pretrained,
it can be directly used for spectral sensing. Hence, testing time becomes particularly
important in practical sensing, demonstrating that the method proposed in this paper is
both efficient and feasible.

Table 2. Pd, Pf a, Training Time, and Sensing Time of Several Algorithms.

Algorithm Training Time/s Sensing Time/s

RDN–CBAM_5L 21.43 2.23
CNN_5L 24.92 2.74

RDN–CBAM_20L 32.75 3.93
CNN_20L 37.31 5.71

SVM 14.57 10.32

From a complexity perspective, let n denote the number of training samples and
m represent the number of unauthorized users. The SVM algorithm needs to compute
matrix eigenvalues and carries out classifications with a complexity of O

(
n3), resulting

in an overall complexity of O
(
nm3 + n3). The complexity of the CNN spectrum sensing

algorithm is O
(

n ∑L
L=1 F2

l K2
l QlQl−1

)
, where L, Fl , Kl , and Ql , respectively, indicate the

number of network layers, the edge length of the feature map output from the lth Conv, the
side length of the convolution kernel, and the number of output channels.

The sole difference in complexity between the RDN–CBAM spectrum sensing algo-
rithm and the CNN algorithm lies in the different number of layers l. The RDN–CBAM
spectrum sensing algorithm can skip one or more Conv layers through shortcut connections.
This allows the l in O

(
n ∑L

L=1 F2
l K2

l QlQl−1

)
to “jump” in selecting the number of layers,

instead of having the complexity l accumulate from the first layer all the way to the lth

layer as in the CNN algorithm. As a result, RDN reduces the parameters required to train
convolution layers, thus decreasing the algorithm’s complexity.

Given that CBAM is a lightweight and versatile module, the overhead of this module
can be neglected, allowing its seamless integration into any CNN architecture. Hence, the
overall complexity of the RDN–CBAM spectrum sensing algorithm can be reduced.

4.5. Experiment 4: Comparison of Spectrum Sensing Performance among Different Models

In our experiment, we compared the detection probabilities of RDN–CBAM, RDN,
CNN, and SVM spectral sensing methods under SNR values ranging from −20 dB to
0 dB. The number of layers chosen for the RDN–CBAM, RDN, and CNN spectral sensing

Sensors 2023, 23, 7791 12 of 14

models were 20 layers, 16 layers, and 5 layers, respectively, using the same dataset as
Experiment 1. The experimental results, as shown in Figure 10, reveal that when the SNR is
lower than −10 dB, the detection probability of the RDN–CBAM spectral sensing method
consistently surpasses the other methods, including RDN, CNN, and SVM. This is because
the convolutional attention module of RDN–CBAM can extract more useful features and
suppress irrelevant ones, thereby effectively enhancing the model’s detection capabilities.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14

The number of layers chosen for the RDN–CBAM, RDN, and CNN spectral sensing mod-
els were 20 layers, 16 layers, and 5 layers, respectively, using the same dataset as Experi-
ment 1. The experimental results, as shown in Figure 10, reveal that when the SNR is lower
than −10 dB, the detection probability of the RDN–CBAM spectral sensing method con-
sistently surpasses the other methods, including RDN, CNN, and SVM. This is because
the convolutional attention module of RDN–CBAM can extract more useful features and
suppress irrelevant ones, thereby effectively enhancing the model’s detection capabilities.

Figure 10. Detection probabilities of RDN–CBAM, RDN, CNN, and SVM under different SNR.

We conducted multiple experiments to comprehensively validate the effectiveness of
the RDN–CBAM spectrum sensing method and recorded the 𝑃 and 𝑃 values in each
experiment compared to the traditional CNN, RDN, and SVM spectrum sensing methods,
obtaining the ROC (Receiver Operating Characteristic) curve. In these experiments, we
used the same dataset as in Experiment 1, taking SNR = −16 dB as an example.

Figure 11 displays the experimental results. We can observe that the RDN–CBAM
spectrum sensing method performed exceptionally well in all experiments. At a false
alarm probability 𝑃 = 0.05, the detection probabilities for RDN–CBAM, RDN, CNN,
and SVM methods were 0.97, 0.91, 0.87, and 0.71, respectively. The ROC curve for RDN–
CBAM is notably higher than those for the CNN, RDN, and SVM spectrum sensing meth-
ods. This indicates that the RDN–CBAM spectrum sensing method exhibits strong perfor-
mance in processing low signal-to-noise ratio signals and can significantly enhance the
accuracy and reliability of spectrum sensing.

Figure 10. Detection probabilities of RDN–CBAM, RDN, CNN, and SVM under different SNR.

We conducted multiple experiments to comprehensively validate the effectiveness
of the RDN–CBAM spectrum sensing method and recorded the Pd and Pf a values in each
experiment compared to the traditional CNN, RDN, and SVM spectrum sensing methods,
obtaining the ROC (Receiver Operating Characteristic) curve. In these experiments, we
used the same dataset as in Experiment 1, taking SNR = −16 dB as an example.

Figure 11 displays the experimental results. We can observe that the RDN–CBAM
spectrum sensing method performed exceptionally well in all experiments. At a false alarm
probability Pf a = 0.05, the detection probabilities for RDN–CBAM, RDN, CNN, and SVM
methods were 0.97, 0.91, 0.87, and 0.71, respectively. The ROC curve for RDN–CBAM is
notably higher than those for the CNN, RDN, and SVM spectrum sensing methods. This
indicates that the RDN–CBAM spectrum sensing method exhibits strong performance in
processing low signal-to-noise ratio signals and can significantly enhance the accuracy and
reliability of spectrum sensing.

Sensors 2023, 23, 7791 13 of 14Sensors 2023, 23, x FOR PEER REVIEW 13 of 14

Figure 11. ROC curves of RDN–CBAM, RDN, CNN, and SVM spectrum sensing methods.

5. Conclusions
To improve the feature extraction capability of traditional CNN spectral perception

methods and to avoid the problem of gradient vanishing in deep network structures, as
well as to address the feature degradation issue when increasing the layers of the RDN
network, we introduce an RDN–CBAM spectral perception approach. This method em-
ploys residual dense blocks and convolutional attention mechanisms to thoroughly ex-
tract deep features of grayscale images. Furthermore, it uses a deep network to train the
spectral perception model to enhance the classification and recognition accuracy of gray-
scale images, thereby improving spectral perception performance. Experimental results
show that, compared to spectral perception methods like CNN, RDN, and SVM, our pro-
posed RDN–CBAM spectral perception approach has a higher detection probability under
equal false alarm rates and a lower false alarm rate under equal detection probabilities.
Moreover, there is no issue of network degradation in deep network structures.

This paper aims to address the shortcomings of traditional CNN models, namely the
vanishing gradient problem and weak feature extraction. Future work will focus on test-
ing the performance of the proposed model on different modulated signals and compar-
ing it with more advanced models.

Author Contributions: Conceptualization, A.W., Q.M. and M.W.; data curation, Q.M.; methodology,
A.W., Q.M. and M.W.; writing—review and editing, A.W., Q.M. and M.W.; funding acquisition,
A.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China
(U19b2015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 11. ROC curves of RDN–CBAM, RDN, CNN, and SVM spectrum sensing methods.

5. Conclusions

To improve the feature extraction capability of traditional CNN spectral perception
methods and to avoid the problem of gradient vanishing in deep network structures, as well
as to address the feature degradation issue when increasing the layers of the RDN network,
we introduce an RDN–CBAM spectral perception approach. This method employs residual
dense blocks and convolutional attention mechanisms to thoroughly extract deep features
of grayscale images. Furthermore, it uses a deep network to train the spectral perception
model to enhance the classification and recognition accuracy of grayscale images, thereby
improving spectral perception performance. Experimental results show that, compared
to spectral perception methods like CNN, RDN, and SVM, our proposed RDN–CBAM
spectral perception approach has a higher detection probability under equal false alarm
rates and a lower false alarm rate under equal detection probabilities. Moreover, there is no
issue of network degradation in deep network structures.

This paper aims to address the shortcomings of traditional CNN models, namely the
vanishing gradient problem and weak feature extraction. Future work will focus on testing
the performance of the proposed model on different modulated signals and comparing it
with more advanced models.

Author Contributions: Conceptualization, A.W., Q.M. and M.W.; data curation, Q.M.; methodology,
A.W., Q.M. and M.W.; writing—review and editing, A.W., Q.M. and M.W.; funding acquisition, A.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (U19b2015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7791 14 of 14

References
1. Tian, F.; Feng, Z.; Chen, X. Spectrum occupancy measurement and analysis. ZTE Commun. 2009, 7, 16–20.
2. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
3. Khaled, H.; Ahmad, I.; Habibi, D.; Phung, Q.V. A Secure and Energy-Aware Approach for Cognitive Radio Communications.

IEEE Open J. Commun. Soc. 2020, 1, 900–915. [CrossRef]
4. Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials

2009, 11, 116–130. [CrossRef]
5. Sun, H.; Nallanathan, A.; Wang, C.-X.; Chen, Y. Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wirel.

Commun. 2013, 20, 74–81. [CrossRef]
6. Hussain, S.; Fernando, X. Spectrum sensing in cognitive radio networks: Up-to-date techniques and future challenges. In

Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON,
Canada, 26–27 September 2009; pp. 736–741. [CrossRef]

7. Margoosian, A.; Abouei, J.; Plataniotis, K.N. Accurate kernel-based spectrum sensing for Gaussian and non-Gaussian noise
models. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South
Brisbane, QLD, Australia, 19–24 April 2015; pp. 3152–3156. [CrossRef]

8. Ye, Y.; Li, Y.; Lu, G.; Zhou, F. Improved Energy Detection with Laplacian Noise in Cognitive Radio. IEEE Syst. J. 2019, 13, 18–29.
[CrossRef]

9. Bao, J.; Nie, J.; Liu, C.; Jiang, B.; Zhu, F.; He, J. Improved Blind Spectrum Sensing by Covariance Matrix Cholesky Decomposition
and RBF-SVM Decision Classification at Low SNRs. IEEE Access 2019, 7, 97117–97129. [CrossRef]

10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
11. Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307.

[CrossRef]
12. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications.

Neurocomputing 2017, 234, 11–26. [CrossRef]
13. Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep Learning Advances in Computer Vision with 3D Data. ACM

Comput. Surv. 2018, 50, 20. [CrossRef]
14. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Process. Mag. 2012, 29, 82–97. [CrossRef]

15. Socher, R.; Bengio, Y.; Manning, C.D. Deep Learning for NLP (without Magic). In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (2012), Jeju, Republic of Korea, 8 July 2012.

16. Zheng, S.; Chen, S.; Yang, L.; Zhu, J.; Luo, Z.; Hu, J.; Yang, X. Big Data Processing Architecture for Radio Signals Empowered by
Deep Learning: Concept, Experiment, Applications and Challenges. IEEE Access 2018, 6, 55907–55922. [CrossRef]

17. Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion Methods for CNN-Based Automatic Modulation Classification. IEEE Access 2019, 7,
66496–66504. [CrossRef]

18. Chen, S.; Zheng, S.; Yang, L.; Yang, X. Deep Learning for Large-Scale Real-World ACARS and ADS-B Radio Signal Classification.
IEEE Access 2019, 7, 89256–89264. [CrossRef]

19. Yuan, Q.; Chen, K.; Yu, Y.; Le, N.Q.K.; Chua, M.C.H. Prediction of anticancer peptides based on an ensemble model of deep
learning and machine learning using ordinal positional encoding. Briefings Bioinform. 2023, 24, bbac630. [CrossRef] [PubMed]

20. Kha, Q.-H.; Ho, Q.-T.; Le, N.Q.K. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional
Neural Network and PSSM Profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [CrossRef] [PubMed]

21. Pan, G.; Li, J.; Lin, F. A cognitive radio spectrum sensing method for an OFDM signal based on deep learning and cycle spectrum.
Int. J. Digit. Multimed. Broadcast. 2020, 2020, 5069021. [CrossRef]

22. Zhang, M.; Wang, L.; Feng, Y.; Yin, H. A Spectrum Sensing Algorithm for OFDM Signal Based on Deep Learning and Covariance
Matrix Graph. IEICE Trans. Commun. 2018, E101.B, 2435–2444. [CrossRef]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

24. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/OJCOMS.2020.3009241
https://doi.org/10.1109/SURV.2009.090109
https://doi.org/10.1109/MWC.2013.6507397
https://doi.org/10.1109/TIC-STH.2009.5444402
https://doi.org/10.1109/ICASSP.2015.7178552
https://doi.org/10.1109/JSYST.2017.2759222
https://doi.org/10.1109/ACCESS.2019.2929316
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1145/3042064
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/ACCESS.2018.2872769
https://doi.org/10.1109/ACCESS.2019.2918136
https://doi.org/10.1109/ACCESS.2019.2925569
https://doi.org/10.1093/bib/bbac630
https://www.ncbi.nlm.nih.gov/pubmed/36642410
https://doi.org/10.1021/acs.jcim.2c01034
https://www.ncbi.nlm.nih.gov/pubmed/36166351
https://doi.org/10.1155/2020/5069021
https://doi.org/10.1587/transcom.2017EBP3442
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1412.6980

	Introduction
	System Model
	Spectrum Sensing Algorithm Based on RDN–CBAM for OFDM
	Data Processing
	Residual Connection
	Dense Connections
	Residual Dense Network
	Convolutional Block Attention Module (CBAM)

	Experimental Analysis
	Experimental Conditions
	Experiment 1: Impact of Network Depth on Model Performance
	Experiment 2: Influence of Residual Structure on Model Gradient
	Experiment 3: Comparison of Sensing Efficiency among RDN–CBAM, CNN, and SVM Spectral Sensing Methods
	Experiment 4: Comparison of Spectrum Sensing Performance among Different Models

	Conclusions
	References

