Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks †
Abstract
:1. Introduction
- We exploit the impact of different eavesdropping attacks on the secure multihop transmission for WSNs. More specifically, in the passive eavesdropping attack, the eavesdropper only overhears legitimate users’ transmission. Different from the passive eavesdropping attack, the active eavesdropping attack can overhear each hop transmission and radiate the jamming signal to reduce the main channel condition at the same time. This scenario has not been studied in this literature.
- To enhance the secrecy performance, we propose two node selection schemes. The first scheme can select the node that minimizes the eavesdropper channel gains, called the minimal node selection (MNS) scheme. The second scheme, namely, the optimal node selection (ONS) scheme, can maximize the secrecy capacity of each cluster. We also consider the random node selection (RNS) scheme, which randomly selects the node in each cluster as a benchmark to compare the secrecy performance with the proposed schemes in a multicluster network.
- In order to find the relation between the system parameters and the secrecy performance, we derive a closed-form expression of the secrecy outage probability (SOP) with different eavesdropping attacks and the proposed node selection schemes. Specifically, we obtain the end-to-end SOP as the function of the number of clusters, number of nodes, target secrecy rate, main channel transmit SNR, and eavesdropper jamming SNR.
- From the numerical results, the active eavesdropper seriously affects secrecy performance compared with that of a passive eavesdropping attack. Additionally, ONS outperforms RNS and MNS secrecy performance in terms of SOP, while ONS requires a huge amount of channel information compared with that of other schemes.
2. Related Works
3. System Model
3.1. System Description
3.2. Scenario 1—Passive Eavesdropper
3.3. Scenario 2—Active Eavesdropper
3.4. The Proposed Node Selection Scheme
3.4.1. Random Node Selection (RNS) Scheme
3.4.2. Minimum Node Selection (MNS) Scheme
3.4.3. Optimal Node Selection (ONS) Scheme
4. Secrecy Outage Performance Analysis
4.1. Case I: Random Node Selection Scheme under Passive Eavesdropper
4.2. Case II: Random Node Selection Scheme under Active Eavesdropper
4.3. Case III: Minimal Node Selection with Passive Eavesdropper
4.4. Case IV: Minimal Node Selection with Active Eavesdropper
4.5. Case V: Optimal Node Selection with Passive Eavesdropper
4.6. Case VI: Optimal Node Selection with Active Eavesdropper
5. Performance Evaluations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.K.; Woungang, I.; Anpalagan, A.; Chatzinotas, S. Toward Tactile Internet in beyond 5G Era: Recent Advances, Current Issues, and Future Directions. IEEE Access 2020, 8, 56948–56991. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Lee, Y.L.; Qin, D.; Wang, L.C.; Sim, G.H. 6G Massive Radio Access Networks: Key Applications, Requirements and Challenges. IEEE Open J. Veh. Technol. 2021, 2, 54–66. [Google Scholar] [CrossRef]
- Mao, Z.; Hu, F.; Sun, D.; Ma, S.; Liu, X. Fairness-Aware Intragroup Cooperative Transmission in Wireless Powered Communication Networks. IEEE Trans. Veh. Technol. 2020, 69, 6463–6472. [Google Scholar] [CrossRef]
- Tuan, N.T.; Kim, D.S.; Lee, J.M. On the performance of cooperative transmission schemes in industrial wireless sensor networks. IEEE Trans. Industr. Inform. 2018, 14, 4007–4018. [Google Scholar] [CrossRef]
- El-Banna, A.A.; Wu, K.; Elhalawany, B.M. Opportunistic Cooperative Transmission for Underwater Communication Based on the Water’s Key Physical Variables. IEEE Sens. J. 2020, 20, 2792–2802. [Google Scholar] [CrossRef]
- Ji, B.; Han, Y.; Wang, Y.; Cao, D.; Tao, F.; Fu, Z.; Li, P.; Wen, H. Relay Cooperative Transmission Algorithms for IoV under Aggregated Interference. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9712–9725. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.; Almaiah, M.A.; Al-Zahrani, M.; Zakarya, M.; Amjad, M.S.; Ahmed, R. MAC-AODV Based Mutual Authentication Scheme for Constraint Oriented Networks. IEEE Access 2020, 8, 44459–44469. [Google Scholar] [CrossRef]
- Li, B.; Zou, Y.; Zhu, J.; Cao, W. Impact of hardware impairment and co-channel interference on security-reliability trade-off for wireless sensor networks. IEEE Trans. Wirel. Commun. 2021, 20, 7011–7025. [Google Scholar] [CrossRef]
- Mehmood, A.; Umar, M.M.; Song, H. ICMDS: Secure inter-cluster multiple-key distribution scheme for wireless sensor networks. Ad Hoc Netw. 2017, 55, 97–106. [Google Scholar] [CrossRef]
- Hieu, T.D.; Duy, T.T.; Kim, B.S. Performance Enhancement for Multihop Harvest-to-Transmit WSNs with Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018, 18, 5173–5186. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Lin, P.C.; Cheng, B.C.; Hwang, R.H.; Lin, Y.D. Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2384–2428. [Google Scholar] [CrossRef]
- Ari, N.; Thomos, N.; Musavian, L. Active Eavesdropping in Short Packet Communication: Average Secrecy Throughput Analysis. In Proceedings of the 2021 IEEE International Conference on Communications Workshops, Montreal, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1773–1828. [Google Scholar] [CrossRef]
- Wang, D.; Bai, B.; Zhao, W.; Han, Z. A Survey of Optimization Approaches for Wireless Physical Layer Security. IEEE Commun. Surv. Tutor. 2019, 21, 1878–1911. [Google Scholar] [CrossRef]
- Duo, B.; Luo, J.; Li, Y.; Hu, H.; Wang, Z. Joint trajectory and power optimization for securing UAV communications against active eavesdropping. China Commun. 2021, 18, 88–99. [Google Scholar] [CrossRef]
- Wang, W.; Teh, K.C.; Li, K.H.; Luo, S. On the Impact of Adaptive Eavesdroppers in Multi-Antenna Cellular Networks. IEEE Trans. Inf. Forensics Secur. 2018, 13, 269–279. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y. Secrecy Anti-jamming Game Learning in D2D Underlay Cellular Networks with an Active Eavesdropper. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 446–451. [Google Scholar]
- Luo, Y.; Feng, Z.; Jiang, H.; Yang, Y.; Huang, Y.; Yao, J. Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper. IEEE Access 2019, 7, 41324–41335. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; Cola, T.D.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Cola, T.D.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Liu, C.; Lee, J.; Quek, T.Q. Safeguarding uav communications against full-duplex active eavesdropper. IEEE Trans. Wirel. Commun. 2019, 18, 2919–2931. [Google Scholar] [CrossRef]
- Kudathanthirige, D.; Timilsina, S.; Baduge, G.A.A. Secure Communication in Relay-Assisted Massive MIMO Downlink with Active Pilot Attacks. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2819–2833. [Google Scholar] [CrossRef]
- Lu, X.; Yang, W.; Guan, X.; Cai, Y. DCE-Based Secure Transmission for Massive MIMO Relay System against Active Eavesdropper. IEEE Trans. Veh. Technol. 2020, 69, 13045–13059. [Google Scholar] [CrossRef]
- Abdullah, Z.; Chen, G.; Abdullah, M.A.; Chambers, J.A. Enhanced Secrecy Performance of Multihop IoT Networks with Cooperative Hybrid-Duplex Jamming. IEEE Trans. Inf. Forensics Secur. 2021, 16, 161–172. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Bouanani, F.E. A PHY Layer Security of a Jamming-Based Underlay Cognitive Satellite-Terrestrial Network. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1266–1279. [Google Scholar] [CrossRef]
- Vahidian, S.; Hatamnia, S.; Champagne, B. On the Security Analysis of a Cooperative Incremental Relaying Protocol in the Presence of an Active Eavesdropper. IEEE Access 2019, 7, 181812–181828. [Google Scholar] [CrossRef]
- Zhou, H.; He, D.; Wang, H.; Yang, D. Optimal Relay Selection with a Full-duplex Active Eavesdropper in Cooperative Wireless Networks. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- Liu, J.; Xu, X.; Han, S.; Zhang, Z.; Liu, C. Hybrid relay selection and cooperative jamming scheme for secure communication in healthcare-IoT. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7. [Google Scholar]
- Shim, K.; Do, N.T.; An, B. Performance analysis of physical layer security of opportunistic scheduling in multiuser multirelay cooperative networks. Sensors 2017, 17, 377. [Google Scholar] [CrossRef]
- Shim, K.; Nguyen, T.V.; An, B. Exploiting opportunistic scheduling schemes and wpt-based multi-hop transmissions to improve physical layer security in wireless sensor networks. Sensors 2019, 19, 5456. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Do, T.N.; Bao, V.N.Q.; Costa, D.B.d.; An, B. On the Performance of Multihop Cognitive Wireless Powered D2D Communications in WSNs. IEEE Trans. Veh. Technol. 2020, 69, 2684–2699. [Google Scholar] [CrossRef]
- Ma, S.; Li, M.; Yang, R.; Sun, Y.; Wang, Z.; Si, P. Next-Hop Relay Selection for Ad Hoc Network-Assisted Train-to-Train Communications in the CBTC System. Sensors 2023, 23, 5883. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Nguyen, V.D.; da Costa, D.B.; Huynh-The, T.; Hu, R.Q.; An, B. Short-Packet Communications in Multihop Networks with WET: Performance Analysis and Deep Learning-Aided Optimization. IEEE Trans. Wirel. Commun. 2023, 22, 439–456. [Google Scholar] [CrossRef]
- Shim, K.; Do, T.N.; Nguyen, T.V.; Costa, D.B.D.; An, B. Enhancing PHY-Security of FD-Enabled NOMA Systems Using Jamming and User Selection: Performance Analysis and DNN Evaluation. IEEE Internet Things J. 2021, 8, 17476–17494. [Google Scholar] [CrossRef]
- Ai, Y.; Mathur, A.; Verma, G.D.; Kong, L.; Cheffena, M. Comprehensive Physical Layer Security Analysis of FSO Communications over Málaga Channels. IEEE Photon. J. 2020, 12, 7906617. [Google Scholar] [CrossRef]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products Seventh Edition; Elsevier Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Lyu, J.; Wang, H.M.; Huang, K.W. Physical Layer Security in D2D Underlay Cellular Networks with Poisson Cluster Process. IEEE Trans. Commun. 2020, 68, 7123–7139. [Google Scholar] [CrossRef]
Case | Node Selection Scheme | Eavesdropper Scenario |
---|---|---|
Case I (c1) | RNS | passive |
Case II (c2) | RNS | active |
Case III (c3) | MNS | passive |
Case IV (c4) | MNS | active |
Case V (c5) | ONS | passive |
Case VI (c6) | ONS | active |
Parameters | Value |
---|---|
Distance between and () | 10 m |
Position of | (0, 0) |
Position of | (10, 0) |
Position of | (5, −5) |
Position of | (, 0) |
Number of hops (K) | 4 hops |
Number of nodes (N) in each cluster | 6 nodes |
Reference distance () | 10 m |
Path-loss exponent () | 2.7 |
Target secrecy rate () | 0.1 bps/Hz |
Node transmit SNR () | 10 dB |
Eavesdropper jamming SNR () | 0 dB |
Case | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Scheme | RNS | RNS | MNS | MNS | ONS | ONS |
Attack | passive | active | passive | active | passive | active |
Complexity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triwidyastuti, Y.; Perdana, R.H.Y.; Shim, K.; An, B. Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks. Sensors 2023, 23, 7653. https://doi.org/10.3390/s23177653
Triwidyastuti Y, Perdana RHY, Shim K, An B. Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks. Sensors. 2023; 23(17):7653. https://doi.org/10.3390/s23177653
Chicago/Turabian StyleTriwidyastuti, Yosefine, Ridho Hendra Yoga Perdana, Kyusung Shim, and Beongku An. 2023. "Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks" Sensors 23, no. 17: 7653. https://doi.org/10.3390/s23177653
APA StyleTriwidyastuti, Y., Perdana, R. H. Y., Shim, K., & An, B. (2023). Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks. Sensors, 23(17), 7653. https://doi.org/10.3390/s23177653