The Future of Stress Management: Integration of Smartwatches and HRV Technology
Abstract
:1. Introduction
2. HRV and Stress Management
3. Smartwatches and Stress Management
4. Comparison of Smartwatches and Compatible Mobile App for Stress Management
5. Discussion
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Available Statement
Acknowledgments
Conflicts of Interest
References
- Rawassizadeh, R.; Price, B.A.; Petre, M. Wearables: Has the age of smartwatches finally arrived? Commun. ACM 2015, 58, 45–47. [Google Scholar] [CrossRef]
- Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J. Med. Int. Res. 2018, 20, e110. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Marwaha, K.; Sanvictores, T.; Ayers, D. Physiology, stress reaction. In Statpearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Johnson, E.O.; Kamilaris, T.C.; Chrousos, G.P.; Gold, P.W. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 1992, 16, 115–130. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Moneghetti, K.J.; Christle, J.W.; Hadley, D.; Plews, D.; Froelicher, V. Heart Rate Variability: An Old Metric with New Meaning in the Era of using mHealth Technologies for Health and Exercise Training Guidance. Part One Physiology Methods. Arrhythm. Electrophysiol. Rev. 2018, 7, 193–198. [Google Scholar]
- Dalmeida, K.M.; Masala, G.L. HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef]
- Chalmers, T.; Hickey, B.A.; Newton, P.; Lin, C.T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors 2021, 22, 151. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, autonomic nervous system. In Statpearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Lischke, A.; Jacksteit, R.; Mau-Moeller, A.; Pahnke, R.; Hamm, A.O.; Weippert, M. Heart rate variability is associated with psychosocial stress in distinct social domains. J. Psychosom. Res. 2018, 106, 56–61. [Google Scholar] [CrossRef]
- van der Zwan, J.E.; de Vente, W.; Huizink, A.C.; Bögels, S.M.; de Bruin, E.I. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: A randomized controlled trial. Appl. Psychophysiol. Biofeedback 2015, 40, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Castro Ribeiro, T.; Sangrà, P.S.; Pagès, E.G.; Badiella, L.; López-Barbeito, B.; Aguiló, S.; Aguiló, J. Assessing effectiveness of heart rate variability biofeedback to mitigate mental health symptoms: A pilot study. Front. Physiol. 2023, 14, 1147260. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Aritzeta, A.; Aranberri-Ruiz, A.; Soroa, G.; Mindeguia, R.; Olarza, A. Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme. Int. J. Environ. Res. Public Health 2022, 19, 5475. [Google Scholar] [CrossRef]
- Chung, A.H.; Gevirtz, R.N.; Gharbo, R.S.; Thiam, M.A.; Ginsberg, J.P.J. Pilot Study on Reducing Symptoms of Anxiety with a Heart Rate Variability Biofeedback Wearable and Remote Stress Management Coach. Appl. Psychophysiol. Biofeedback 2021, 46, 347–358. [Google Scholar] [CrossRef]
- Myllymäki, T.; Rusko, H.; Syväoja, H.; Juuti, T.; Kinnunen, M.L.; Kyröläinen, H. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. Eur. J. Appl. Physiol. 2012, 112, 801–809. [Google Scholar] [CrossRef]
- Tseng, T.H.; Chen, H.C.; Wang, L.Y.; Chien, M.Y. Effects of exercise training on sleep quality and heart rate variability in middle-aged and older adults with poor sleep quality: A randomized controlled trial. J. Clin. Sleep Med. 2020, 16, 1483–1492. [Google Scholar] [CrossRef]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef]
- Luberto, C.M.; Hall, D.L.; Park, E.R.; Haramati, A.; Cotton, S. A Perspective on the Similarities and Differences Between Mindfulness and Relaxation. Glob. Adv. Health Med. 2020, 9, 2164956120905597. [Google Scholar] [CrossRef]
- Can, Y.S.; Iles-Smith, H.; Chalabianloo, N.; Ekiz, D.; Fernández-Álvarez, J.; Repetto, C.; Riva, G.; Ersoy, C. How to Relax in Stressful Situations: A Smart Stress Reduction System. Healthcare 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors 2021, 21, 3461. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Segal, J. Relaxation Techniques for Stress Relief. 1 March 2023. Available online: https://www.helpguide.org/articles/stress/relaxation-techniques-for-stress-relief.htm (accessed on 9 July 2023).
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Huang, H.; Wu, C.E. Physical Activity and Social Support to Promote a Health-Promoting Lifestyle in Older Adults: An Intervention Study. Int. J. Environ. Res. Public Health 2022, 19, 14382. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.D.; Robinson, K.; Forbes, J.; Hayes, S. Experiences of mobile health in promoting physical activity: A qualitative systematic review and meta-ethnography. PLoS ONE 2018, 13, e0208759. [Google Scholar] [CrossRef] [PubMed]
- Bégin, C.; Berthod, J.; Martinez, L.Z.; Truchon, M. Use of Mobile Apps and Online Programs of Mindfulness and Self-Compassion Training in Workers: A Scoping Review. J. Technol. Behav. Sci. 2022, 7, 477–515. [Google Scholar] [CrossRef] [PubMed]
- Huhn, S.; Axt, M.; Gunga, H.C.; Maggioni, M.A.; Munga, S.; Obor, D.; Sié, A.; Boudo, V.; Bunker, A.; Sauerborn, R.; et al. The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR mHealth uHealth 2022, 10, e34384. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar]
- Meza, C.; Juega, J.; Francisco, J.; Santos, A.; Duran, L.; Rodriguez, M.; Alvarez-Sabin, J.; Sero, L.; Ustrell, X.; Bashir, S.; et al. Accuracy of a Smartwatch to Assess Heart Rate Monitoring and Atrial Fibrillation in Stroke Patients. Sensors 2023, 23, 4632. [Google Scholar] [CrossRef]
- Polak, A.G.; Klich, B.; Saganowski, S.; Prucnal, M.A.; Kazienko, P. Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability. Sensors 2022, 22, 7047. [Google Scholar] [CrossRef] [PubMed]
- Jarrin, D.C.; McGrath, J.J.; Giovanniello, S.; Poirier, P.; Lambert, M. Measurement fidelity of heart rate variability signal processing: The devil is in the details. Int. J. Psychophysiol. 2012, 86, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Walter, K.N.; Ball, M.J.; Chang, H.Y.; Sun, S.; Zhu, X. StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches. AMIA Annu. Symp. Proc. 2017, 2017, 830–838. [Google Scholar] [PubMed]
- Gupta, S.; Mahmoud, A.; Massoomi, M.R. A Clinician’s Guide to Smartwatch “Interrogation”. Curr. Cardiol. Rep. 2022, 24, 995–1009. [Google Scholar] [CrossRef]
- Hrabovska, N.; Kajati, E.; Zolotova, I. A Validation Study to Confirm the Accuracy of Wearable Devices Based on Health Data Analysis. Electronics 2023, 12, 2536. [Google Scholar] [CrossRef]
- Scheid, J.L.; West, S.L. Opportunities of Wearable Technology to Increase Physical Activity in Individuals with Chronic Disease: An Editorial. Int. J. Environ. Res. Public Health 2019, 16, 3124. [Google Scholar] [CrossRef]
- Lehrer, C.; Eseryel, U.Y.; Rieder, A.; Jung, R. Behavior change through wearables: The interplay between self-leadership and IT-based leadership. Electron. Mark. 2021, 31, 747–764. [Google Scholar] [CrossRef]
- Lui, G.Y.; Loughnane, D.; Polley, C.; Jayarathna, T.; Breen, P.P. The Apple Watch for Monitoring Mental Health-Related Physiological Symptoms: Literature Review. JMIR Ment. Health 2022, 9, e37354. [Google Scholar] [CrossRef]
- Greiwe, J.; Nyenhuis, S.M. Wearable Technology and How This Can Be Implemented into Clinical Practice. Curr. Allergy Asthma Rep. 2020, 20, 36. [Google Scholar] [CrossRef]
- Laricchia, F. Global Smartwatch Market Share 2020–2022, by Vendor. Available online: https://www.statista.com/statistics/1296818/smartwatch-market-share/ (accessed on 2 June 2023).
- Apple. Watch—Apple. 9 September 2014. Available online: https://www.apple.com/watch/ (accessed on 7 June 2023).
- Garmin. Sport Watches|Smartwatches. 2023. Available online: https://www.garmin.com/en-US/c/wearable-smartwatches/ (accessed on 20 July 2023).
- Fitbit. Smartwatches|Shop Fitbit. 2023. Available online: https://www.fitbit.com/global/us/products/smartwatches (accessed on 9 July 2023).
- Samsung. Smartwatches & Fitness Trackers|Wearable|Samsung US. 2023. Available online: https://www.samsung.com/us/watches/ (accessed on 9 July 2023).
- Polar. Sports Watches|Fitness Trackers. 2023. Available online: https://www.polar.com/us-en/all-watches (accessed on 20 July 2023).
- HRV, Elite. Elite HRV: Best Heart Rate Variability Monitor & App. 2023. Available online: https://elitehrv.com (accessed on 19 July 2023).
- Welltory. Welltory—Heart Rate Variability App & HRV Monitor. 2023. Available online: https://welltory.com/ (accessed on 9 July 2023).
- HRV4Training. HRV4Training. 2023. Available online: https://www.hrv4training.com/ (accessed on 9 July 2023).
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front. Physiol. 2018, 9, 743. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.; Ye, Z. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR mHealth uHealth 2020, 8, e18907. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, V.; Barral, O.; Zhang, C.; Davis, G.; Enns, J.T. On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild. Sensors 2023, 23, 5863. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, C.S.; Truong, H. A Narrative Review of Commercial Platforms Offering Tracking of Heart Rate Variability in Corporate Employees to Detect and Manage Stress. J. Cardiovasc. Dev. Dis. 2023, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Rodrigues, E.; Lima, D.; Barbosa, P.; Gonzaga, K.; Guerra, R.O.; Pimentel, M.; Barbosa, H.; Maciel, Á. HRV Monitoring Using Commercial Wearable Devices as a Health Indicator for Older Persons during the Pandemic. Sensors 2022, 22, 2001. [Google Scholar] [CrossRef]
- Stone, J.D.; Ulman, H.K.; Tran, K.; Thompson, A.G.; Halter, M.D.; Ramadan, J.H.; Stephenson, M.; Finomore, V.S., Jr.; Galster, S.M.; Rezai, A.R.; et al. Assessing the Accuracy of Popular Commercial Technologies That Measure Resting Heart Rate and Heart Rate Variability. Front. Sports Act. Living 2021, 3, 585870. [Google Scholar] [CrossRef]
- Ali, S.M.; Selby, D.A.; Khalid, K.; Dempsey, K.; Mackey, E.; Small, N.; van der Veer, S.N.; McMillan, B.; Bower, P.; Brown, B.; et al. Engagement with consumer smartwatches for tracking symptoms of individuals living with multiple long-term conditions (multimorbidity): A longitudinal observational study. J. Multimorb. Comorbidity 2021, 11, 26335565211062791. [Google Scholar] [CrossRef] [PubMed]
- Shei, R.J.; Holder, I.G.; Oumsang, A.S.; Paris, B.A.; Paris, H.L. Wearable activity trackers-advanced technology or advanced marketing? Eur. J. Appl. Physiol. 2022, 122, 1975–1990. [Google Scholar] [CrossRef]
- Nelson, B.W.; Low, C.A.; Jacobson, N.; Areán, P.; Torous, J.; Allen, N.B. Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. NPJ Digit. Med. 2020, 3, 90. [Google Scholar] [CrossRef]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable Devices for Remote Monitoring of Heart Rate and Heart Rate Variability-What We Know and What Is Coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef]
- Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Föhr, T.; Tolvanen, A.; Myllymäki, T.; Järvelä-Reijonen, E.; Rantala, S.; Korpela, R.; Peuhkuri, K.; Kolehmainen, M.; Puttonen, S.; Lappalainen, R.; et al. Subjective stress, objective heart rate variability-based stress, and recovery on workdays among overweight and psychologically distressed individuals: A cross-sectional study. J. Occup. Med. Toxicol. 2015, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Maritch, M.; Berube, C.; Kraus, M.; Lehmann, V.; Zueger, T. Improving Heart Rate Variability Measurements from consumer smartwatches with machine learning. arXiv 2019, arXiv:1907.07496. [Google Scholar]
- Vos, G.; Trinh, K.; Sarnyai, Z.; Azghadi, M.R. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Int. J. Med. Inform. 2023, 173, 105026. [Google Scholar] [CrossRef]
- Tonacci, A.; Dellabate, A.; Dieni, A.; Bachi, L.; Sansone, F.; Conte, R.; Billeci, L. Can Machine Learning Predict Stress Reduction Based on Wearable Sensors’ Data Following Relaxation at Workplace? A Pilot Study. Processes 2020, 8, 448. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Liao, Y.; Thompson, C.; Peterson, S.; Mandrola, J.; Beg, M.S. The Future of Wearable Technologies and Remote Monitoring in Health Care. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 115–121. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Biswas, N.; Jones, L.D.; Kesari, S.; Ashili, S. Smart Consumer Wearables as Digital Diagnostic Tools: A Review. Diagnostics 2022, 12, 2110. [Google Scholar] [CrossRef]
Feature | Apple Watch | Garmin | Fitbit | Samsung | Polar | Elite HRV | Welltory | HRV4Training |
---|---|---|---|---|---|---|---|---|
Biological Measurement | HR, PA, Falls, Respiration, Sleep and ECG | HR, PA, Respiration and Sleep | HR, PA, Respiration and Sleep | HR, PA, Respiration and Sleep | HR, PA, Respiration and Sleep | HR, Respiration, Sleep, PA, Diet, Lifestyle factor | HR, Respiration, Stress score, Recovery score | HR, Respiration, Training load, Training effect |
HRV Tracking watch and watch series | Apple watch 3, 4, 5, 6, 7, 8 and SE | Fenix 6, Epix (Gen 2) Forerunner 245/245 music/245S/245 S music, 945 LTE, 955/955 solar/955 plus, Instinct 2, Tactix 7, Venu 2 | Sense, Versa 2, 3, Charge 4, 5, Inspire 2, Luxe | Galaxy 4 and 4 classic, Galaxy watch active 2, Galaxy watch 3, Fit, Fit 2 | Polar Vantage V and V2, Grit X and X pro, M430, Ignite, Unite, polar 2 | NA | NA | NA |
Heart Rate variability Tracking | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Graph of HRV | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Stress Tracking | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Stress Tracking watch | Apple watch 4, 5, 6, 7, 8 | Fenix 6, Epix (Gen 2) Forerunner 245/245 music/245S/245 S music, 945 LTE, 955/955 solar/955 plus, Instinct 2, Tactix 7, Venu 2, Venu 2 plus | Sense, Versa 2, 3, Charge 4, 5, Inspire 2, Luxe | Galaxy 4 and 4 classic, Galaxy watch active 2, Galaxy watch 3, Fit, Fit 2 | Polar Vantage V and V2, Grit X and X pro, M430, Ignite, Unite, Polar 2 | NA | NA | NA |
Stress Management features | Breathe app, Mindfulness app | Stress score, Body battery, Relaxation timer, Stress predictor | Stress management score, EDA scan, Relax app | Stress level, Breathe app, Stress management app | Nightly recharge, Serene app, Recovery pro features | Stress score, Breathing exercises, Meditation sessions, Sleep tracking, Recovery recommendations | Stress score, Breathing exercises, Meditation sessions, Sleep tracking, Recovery recommendations | Stress score, Breathing exercises, Recovery recommendations |
HRV Biofeedback | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Personalization of Real time HRV Biofeedback watch | Minimum | Medium (Garmin Forerunner 945, Garmin Venu 2, and Garmin Vivoactive 4) | Medium (Fitbit Sense and Fitbit Versa 3) | Minimum | Medium (Polar Vantage V2, Polar Grit X Pro, and Polar Ignite) | High | High | Medium |
Time Domain (RMSSD, SDNN) and Frequency Domain (HF, LF, LF/HF ratio) | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Algorithms used | Pan Tompkins algorithm, Hilbert transform | Pan Tompkins algorithm, Hilbert transform, Poincaré plot | Pan Tompkins algorithm, Hilbert transform | Pan Tompkins algorithm, Hilbert transform | Pan Tompkins algorithm, Hilbert transform | Pan Tompkins algorithm, Hilbert transform, Poincaré plot | Pan Tompkins algorithm, Hilbert transform | Pan Tompkins algorithm, Hilbert transform |
Abnormal HR Alerts | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Respiratory Rate and Depth | During Sleep | During Sleep | During Sleep and While awake | During Sleep and While awake | During Sleep and While awake | Needs Chest Strap | Can measure | Needs Chest Strap |
Compatible with Third party Apps | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes |
Accuracy | Good | Good | Good | Good | Good | Excellent | Better than smartwatch | Better than smartwatch |
Battery Life | Up to 18 h | From 24 h up to 14 days | Up to 7 days | From 40 h up to 4 days | From 30 h up to 7 days | Up to 24 h | Up to 12 h | Varies |
User Friendliness | Good | Good | Good | Good | Good | Good | Good | Excellent |
Price | Starting at $399 | Starting at $299 | Starting at $299 | Starting at $249 | Starting at $299 | Starting from $0–30/mon | Starting from $13–79/mon | Starting at $9.99/mon |
Additional Features | Activity tracking, sleep tracking, GPS, music, notifications, payments [44] | Activity tracking, multisport tracking, GPS, music, notifications, payments [45] | Sleep tracking, stress tracking, GPS, music, notifications, payments [46] | Activity tracking, health tracking, GPS, music, notifications, payments [47] | Activity tracking, GPS [48] | Heart rate variability analysis (HRV coherence, HRV spectral analysis) [49] | Stress management insights, heart rate variability analysis (HRV coherence, HRV spectral analysis) [50] | Heart rate variability analysis (HRV coherence, HRV spectral analysis) [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerath, R.; Syam, M.; Ahmed, S. The Future of Stress Management: Integration of Smartwatches and HRV Technology. Sensors 2023, 23, 7314. https://doi.org/10.3390/s23177314
Jerath R, Syam M, Ahmed S. The Future of Stress Management: Integration of Smartwatches and HRV Technology. Sensors. 2023; 23(17):7314. https://doi.org/10.3390/s23177314
Chicago/Turabian StyleJerath, Ravinder, Mohammad Syam, and Shajia Ahmed. 2023. "The Future of Stress Management: Integration of Smartwatches and HRV Technology" Sensors 23, no. 17: 7314. https://doi.org/10.3390/s23177314