Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Humidity Sensors
2.3. Apparatus and Characterizations
3. Results and Discussion
3.1. Characterization of Clay Minerals
3.2. Sensitivity of Humidity Sensor
3.3. Humidity Hysteresis Properties
3.4. Response and Recovery Time
3.5. Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, K.; Zhao, H.; Dai, J.; Kuang, D.; Fei, T.; Zhang, T. Excellent Humidity Sensor Based on LiCl Loaded Hierarchically Porous Polymeric Microspheres. ACS Appl. Mater. Interfaces 2016, 8, 25529–25534. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jung, B.; Lee, H.; Kim, H.; Lee, K.; Park, H. Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B-Chem. 2009, 141, 441–446. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, W.; Ghosh, A.; Wang, G.; Wu, F.; Zhang, H. Miniaturized langasite MEMS micro-cantilever beam structured resonator for high temperature gas sensing. Smart Mater. Struct. 2020, 29, 055002. [Google Scholar] [CrossRef]
- Yin, M.; Hu, J.; Huang, M.; Chen, P.; Zhang, Y. Moisture-induced reversible material transition behavior of Nickel (II) bromide for low humidity detection. Sens. Actuators A Phys. 2021, 331, 112911. [Google Scholar] [CrossRef]
- Baloch, S.K.; Jonáš, A.; Kiraz, A.; Alaca, B.E.; Erkey, C. Determination of composition of ethanol-CO2 mixtures at high pressures using frequency response of microcantilevers. J. Supercrit. Fluids 2018, 132, 65–70. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Yu, J.; Wang, M. Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J. Mater. Chem. 2011, 21, 16231–16238. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Lee, C.-Y.; Chiang, C.-M. A MEMS-based air flow sensor with a free-standing micro-cantilever structure. Sensors 2007, 7, 2389–2401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lou, L.; Park, W.-T.; Lee, C. Characterization of a silicon nanowire-based cantilever air-flow sensor. J. Micromech. Microeng. 2012, 22, 095008. [Google Scholar] [CrossRef]
- Ashok, A.; Gangele, A.; Pal, P.; Pandey, A.K. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices. J. Micromech. Microeng. 2018, 28, 075009. [Google Scholar] [CrossRef]
- Frinak, E.K.; Mashburn, C.D.; Tolbert, M.A.; Toon, O.B. Infrared characterization of water uptake by low-temperature Na-montmorillonite: Implications for Earth and Mars. J. Geophys. Res. 2005, 110, D09308. [Google Scholar] [CrossRef]
- Li, G.-y.; Ma, J.; Peng, G.; Chen, W.; Chu, Z.-y.; Li, Y.-h.; Hu, T.-j.; Li, X.-d. Room-Temperature Humidity-Sensing Performance of SiC Nanopaper. ACS Appl. Mater. Interfaces 2014, 6, 22673–22679. [Google Scholar] [CrossRef] [PubMed]
- Pawbake, A.S.; Waykar, R.G.; Late, D.J.; Jadkar, S.R. Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications. ACS Appl. Mater. Interfaces 2016, 8, 3359–3365. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, M.A.; Monier, G.; Robert-Goumet, C.; Reveret, F.; Echabaane, M.; Chaudanson, D.; Petit, M.; Bideux, L.; Gruzza, B. Synthesis and Study of Stable and Size-Controlled ZnO-SiO2 Quantum Dots: Application as a Humidity Sensor. J. Phys. Chem. C 2016, 120, 11652–11662. [Google Scholar] [CrossRef]
- Erol, A.; Okur, S.; Comba, B.; Mermer, O.; Arikan, M.C. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sens. Actuators B-Chem. 2010, 145, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Demir, R.; Okur, S.; Seker, M. Electrical Characterization of CdS Nanoparticles for Humidity Sensing Applications. Ind. Eng. Chem. Res. 2012, 51, 3309–3313. [Google Scholar] [CrossRef]
- Pawar, M.S.; Bankar, P.K.; More, M.A.; Late, D.J. Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv. 2015, 5, 88796–88804. [Google Scholar] [CrossRef]
- Han, J.-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon Nanotube Based Humidity Sensor on Cellulose Paper. J. Phys. Chem. C 2012, 116, 22094–22097. [Google Scholar] [CrossRef]
- Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.; Soper, A.K.; Greathouse, J.A. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA 1999, 96, 3358–3364. [Google Scholar] [CrossRef]
- Li, S.; He, H.; Tao, Q.; Zhu, J.; Tan, W.; Ji, S.; Yang, Y.; Zhang, C. Kaolinization of 2:1 type clay minerals with different swelling properties. Am. Mineral. 2020, 105, 687–696. [Google Scholar] [CrossRef]
- Hatch, C.D.; Gough, R.V.; Tolbert, M.A. Heterogeneous uptake of the C-1 to C-4 organic acids on a swelling clay mineral. Atmos. Chem. Phys. 2007, 7, 4445–4458. [Google Scholar] [CrossRef] [Green Version]
- Zampori, L.; Stampino, P.G.; Dotelli, G. Adsorption of nitrobenzene and orthochlorophenol on dimethyl ditallowyl montmorillonite: A microstructural and thermodynamic study. Appl. Clay Sci. 2009, 42, 605–610. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of Chromium(VI) from Water by Clays. Ind. Eng. Chem. Res. 2006, 45, 7232–7240. [Google Scholar] [CrossRef]
- Kajita, L.S. An improved contaminant resistant clay for environmental clay liner applications. Clays Clay Miner. 1997, 45, 609–617. [Google Scholar] [CrossRef]
- Joshi, G.V.; Patel, H.A.; Kevadiya, B.D.; Bajaj, H.C. Montmorillonite intercalated with vitamin B1 as drug carrier. Appl. Clay Sci. 2009, 45, 248–253. [Google Scholar] [CrossRef]
- Luo, P.; Zhong, N.; Khan, I.; Wang, X.; Wang, H.; Luo, Q.; Guo, Z. Effects of pore structure and wettability on methane adsorption capacity of mud rock: Insights from mixture of organic matter and clay minerals. Fuel 2019, 251, 551–561. [Google Scholar] [CrossRef]
- Yi, H.; Jia, F.; Zhao, Y.; Wang, W.; Song, S.; Li, H.; Liu, C. Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: A molecular dynamic study. Appl. Surf. Sci. 2018, 459, 148–154. [Google Scholar] [CrossRef]
- Pan, B.; Yin, X.; Iglauer, S. A review on clay wettability: From experimental investigations to molecular dynamics simulations. Adv. Colloid Interface Sci. 2020, 285, 102266. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Murray, H.H. Overview—Clay mineral applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Serwicka, E.M.; Bahranowski, K. Environmental catalysis by tailored materials derived from layered minerals. Catal. Today 2004, 85, 85–92. [Google Scholar] [CrossRef]
- Dong, F.; Xiangfang, L.; Xiangzeng, W.; Jing, L.; Juntai, S.; Tao, Z.; Peihuan, L.; Yu, C. Pore size distribution characteristic and methane sorption capacity of clay minerals under different water saturation. J. China Coal Soc. 2017, 42, 2402–2413. [Google Scholar]
- Abdel-Aziz, H.M.; El-Zahhar, A.A.; Siyam, T. Sorption studies of neutral red dye onto poly(acrylamide-co-maleic acid)-kaolinite/montmorillonite composites. J. Appl. Polym. Sci. 2011, 124, 386–396. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, A. Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React. Funct. Polym. 2007, 67, 737–745. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceicao, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazu, S. Self-Assembly Processes in Hydrated Montmorillonite by FTIR Investigations. Materials 2020, 13, 1100. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Hu, H.; Song, M.; Tan, J.; Huang, G.; Zuo, J. Preparation, characterization, and Cd(II) sorption of/on cysteine-montmorillonite composites synthesized at various pH. Environ. Sci. Pollut. Res. 2020, 27, 10599–10606. [Google Scholar] [CrossRef] [PubMed]
- Drits, V.A.; Zviagina, B.B.; Sakharov, B.A.; Dorzhieva, O.V.; Savichev, A.T. New insight into the relationships between structural and ftir spectroscopic features of kaolinites. Clays Clay Miner. 2021, 69, 366–388. [Google Scholar] [CrossRef]
- Du Plessis, P.I.; Gazley, M.F.; Tay, S.L.; Trunfull, E.F.; Knorsch, M.; Branch, T.; Fourie, L.F. Quantification of Kaolinite and Halloysite Using Machine Learning from FTIR, XRF, and Brightness Data. Minerals 2021, 11, 1350. [Google Scholar] [CrossRef]
- Ianchis, R.; Donescu, D.; Corobea, M.C.; Nistor, C.L.; Petcu, C.; Somoghi, R.; Fierascu, R.D. Synthesis of superhydrophobic montmorillonite by edge covalent bonding with monofunctional alkoxysilane. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5, 1352–1355. [Google Scholar]
- Majumder, S.; Jha, A.K.; Mishra, K.K. Powdered X-ray diffraction, FTIR, TGA and DTA studies of montmorillonite derivatives. J. Indian Chem. Soc. 2020, 97, 1604–1608. [Google Scholar]
- Han, S.; Zhao, Y. Preparation and characterization of organic montmorillonite. J. Chengdu Univ. (Nat. Sci. Ed.) 2017, 36, 414–416. [Google Scholar]
- Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 2018, 159, 83–93. [Google Scholar] [CrossRef]
- Steffens, C.; Manzoli, A.; Leite, F.L.; Fatibello, O.; Herrmann, P.S.P. Atomic force microscope microcantilevers used as sensors for monitoring humidity. Microelectron. Eng. 2014, 113, 80–85. [Google Scholar] [CrossRef]
- Li, D.; Le, X.; Pang, J.; Xie, J. An ALN Resonant Microcantilever Humidity Sensor by Activating Specific Sets of Top Electrodes Based on Graphene Oxide. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1337–1340. [Google Scholar]
- Li, D.; Dong, H.; Xie, Z.; Zhang, Q.; Qu, M.; Fu, Y.; Xie, J. High Resolution and Fast Response of Humidity Sensor Based on AlN Cantilever With Two Groups of Segmented Electrodes. IEEE Electron Device Lett. 2021, 42, 923–926. [Google Scholar] [CrossRef]
- Le, X.; Peng, L.; Pang, J.; Xu, Z.; Gao, C.; Xie, J. Humidity sensors based on AlN microcantilevers excited at high-order resonant modes and sensing layers of uniform graphene oxide. Sens. Actuators B-Chem. 2019, 283, 198–206. [Google Scholar] [CrossRef]
Sensitivity/S | 10–27 (nm/%RH) | 10–45 (nm/%RH) | 10–63 (nm/%RH) | 10–80 (nm/%RH) |
---|---|---|---|---|
MC-M | 116.7 | 133.6 | 140.9 | 128.7 |
MC-K | 3.49 | 4.54 | 4.3 | 4.01 |
MC-MK | 58.9 | 55.1 | 46.4 | 38.5 |
Reference | Sensitive Material | Sensing Range (%RH) | Sensitivity | Response and Recovery Time (s) |
---|---|---|---|---|
This paper | Montmorillonite | 10–80 | 128.7 nm/%RH | 52/97 |
[44] | polyaniline | 20–65 | 121.4 nm/%RH | - |
[45] | Complementary metal oxide semiconductor | 20–80 | 7 mV/%RH | - |
[46] | Molybdenum disulfide | 10–90 | 778 Hz/%RH | 0.6/8 |
[47] | Graphene oxide | 10–90 | 84.41 Hz/%RH | 10/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, S.; Zhang, J.; Chai, S.; Li, J.; Xue, C.; Wu, S. Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection. Sensors 2023, 23, 6962. https://doi.org/10.3390/s23156962
Xu Y, Liu S, Zhang J, Chai S, Li J, Xue C, Wu S. Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection. Sensors. 2023; 23(15):6962. https://doi.org/10.3390/s23156962
Chicago/Turabian StyleXu, Yiting, Song Liu, Junfeng Zhang, Songyang Chai, Jianjun Li, Changguo Xue, and Shangquan Wu. 2023. "Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection" Sensors 23, no. 15: 6962. https://doi.org/10.3390/s23156962
APA StyleXu, Y., Liu, S., Zhang, J., Chai, S., Li, J., Xue, C., & Wu, S. (2023). Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection. Sensors, 23(15), 6962. https://doi.org/10.3390/s23156962