Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Pressure Data
2.2. Data Analysis
- Center of pressure (COP), defined as the centroid of the distribution, in the longitudinal and transverse direction with respect to the long axis of the mat;
- Contact area between the mattress and the individuals, in which sensors recorded a pressure of or above a minimum threshold of 5, 10, and 20 mmHg;
- Peak pressure, which described the maximum pressure value;
- Peak pressure gradient, which described the maximum change in pressure between adjacent sensing cells.
3. Results
3.1. Postural Movement Events: ROC Analysis
3.2. Posture Classification: Convolutional Neural Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al. Prevention and treatment of pressure ulcers/injuries: Clinical practice guidelines 2019. J. Tissue Viability 2019, 28, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.; Nelson, E.A.; Keen, J.; Wilson, L.; McGinnis, E.; Dealey, C.; Stubbs, N.; Muir, D.; Farrin, A.; Dowding, D.; et al. Developing a pressure ulcer risk factor minimum data set and risk assessment framework. J. Adv. Nurs. 2014, 70, 2339–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, J.F.; Fuller, G.W.; Vowden, P. Cohort Study Evaluating the Burden of Wounds to the UK’s National Health Service in 2017/2018: Update from 2012/2013. BMJ Open 2020, 10, e045253. [Google Scholar] [CrossRef] [PubMed]
- Reenalda, J.; Jannink, M.; Nederhand, M.; IJzerman, M. Clinical Use of Interface Pressure to Predict Pressure Ulcer Development: A Systematic Review. Assist. Technol. 2009, 21, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.; Caggiari, S.; Major, D.; Bader, D.L.; Worsley, P.R. Continuous pressure monitoring of inpatient spinal cord injured patients: Implications for pressure ulcer development. Spinal Cord 2022, 61, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gunningberg, L.; Sedin, I.-M.; Andersson, S.; Pingel, R. Pressure mapping to prevent pressure ulcers in a hospital setting: A pragmatic randomised controlled trial. Int. J. Nurs. Stud. 2017, 72, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Caggiari, S.; Worsley, P.R.; Bader, D.L. A sensitivity analysis to evaluate the performance of temporal pressure–related parameters in detecting changes in supine postures. Med. Eng. Phys. 2019, 69, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Caggiari, S.; Worsley, P.R.; Payan, Y.; Bucki, M.; Bader, D.L. Biomechanical monitoring and machine learning for the detection of lying postures. Clin. Biomech. 2020, 80, 105181. [Google Scholar] [CrossRef] [PubMed]
- Caggiari, S.; Worsley, P.R.; Fryer, S.L.; Mace, J.; Bader, D.L. Detection of posture and mobility in individuals at risk of developing pressure ulcers. Med. Eng. Phys. 2021, 91, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Stinson, M.D.; Porter-Armstrong, A.P.; Eakin, A.P. Pressure mapping systems: Reliability of pressure map interpretation. Clin. Rehabil. 2003, 17, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Bogie, K.; Wang, X.; Fei, B.; Sun, J. New technique for real-time interface pressure analysis: Getting more out of large image data sets. J. Rehabil. Res. Dev. 2008, 45, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Vermander, P.; Mancisidor, A.; Cabanes, I.; Perez, N.; Torres-Unda, J. Intelligent Sitting Posture Classifier for Wheelchair Users. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, B.; Krause, A.; Forlizzi, J.; Guestrin, C.; Hodgins, J. Robust, low-cost, non-intrusive sensing and recognition of seated postures. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 7 October 2007; Association for Computing Machinery: Newport, RI, USA, 2007; pp. 149–158. [Google Scholar]
- Peng, M.; Southern, D.A.; Ocampo, W.; Kaufman, J.; Hogan, D.B.; Conly, J.; Baylis, B.W.; Stelfox, H.T.; Ho, C.; Ghali, W.A. Exploring data reduction strategies in the analysis of continuous pressure imaging technology. BMC Med. Res. Methodol. 2023, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Moore, Z.; Cowman, S.; Conroy, R.M. A randomised controlled clinical trial of repositioning, using the 30° tilt, for the prevention of pressure ulcers. J. Clin. Nurs. 2011, 20, 2633–2644. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [Google Scholar] [CrossRef]
- Hudec, R.; Matúška, S.; Kamencay, P.; Benco, M. A Smart IoT System for Detecting the Position of a Lying Person Using a Novel Textile Pressure Sensor. Sensors 2020, 21, 206. [Google Scholar] [CrossRef] [PubMed]
- McInnes, E.; Jammali-Blasi, A.; Bell-Syer, S.E.; Dumville, J.C.; Middleton, V.; Cullum, N. Support surfaces for pressure ulcer prevention. Cochrane Database Syst. Rev. 2015, 9, CD001735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, C.-H.; Kim, H.-S.; Yoo, W.-G.; Kim, M.-H.M.; Kwon, O.-Y. The Effects of Different Types of Automated Inclining Bed and Tilt Angle on Body-Pressure Redistribution. Adv. Ski. Wound Care 2009, 22, 259–264. [Google Scholar] [CrossRef] [PubMed]
Age [yo] | Height [m] | Weight [kg] | BMI [kg/m2] | |
---|---|---|---|---|
Foam mattress | 33 ± 6.71 (range 27−56) | 1.72 ± 0.1 | 70.3 ± 15.9 | 23.6 ± 3.4 (range 19−30) |
Air cell mattress | 34.4 ± 11.6 (range 21−69) | 1.71 ± 1.0 | 73.1 ± 18.3 | 24.5 ± 4.2 (range 19−30) |
N Sensors | Sampling Frequency | ||||
---|---|---|---|---|---|
5664 | 1 Hz | 0.5 Hz | 0.3 Hz | 0.2 Hz | 0.1 Hz |
1416 | |||||
624 | |||||
348 | |||||
207 |
AUC Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sampling frequency | ||||||||||
1 Hz | 0.5 Hz | 0.3 Hz | 0.2 Hz | 0.1 Hz | 1 Hz | 0.5 Hz | 0.3 Hz | 0.2 Hz | 0.1 Hz | |
Foam mattress | Air cell mattress | |||||||||
N sensors | COP–longitudinal direction | |||||||||
5664 | 0.71 | 0.70 | 0.70 | 0.68 | 0.65 | 0.88 | 0.86 | 0.83 | 0.81 | 0.78 |
1416 | 0.71 | 0.70 | 0.70 | 0.68 | 0.65 | 0.83 | 0.80 | 0.78 | 0.74 | 0.69 |
624 | 0.71 | 0.70 | 0.70 | 0.67 | 0.64 | 0.83 | 0.80 | 0.78 | 0.73 | 0.68 |
348 | 0.71 | 0.70 | 0.70 | 0.68 | 0.65 | 0.83 | 0.80 | 0.78 | 0.74 | 0.69 |
207 | 0.71 | 0.70 | 0.70 | 0.68 | 0.65 | 0.83 | 0.79 | 0.78 | 0.74 | 0.68 |
COP–transverse direction | ||||||||||
5664 | 0.67 | 0.69 | 0.68 | 0.67 | 0.64 | 0.86 | 0.84 | 0.82 | 0.78 | 0.78 |
1416 | 0.67 | 0.68 | 0.68 | 0.67 | 0.64 | 0.81 | 0.79 | 0.76 | 0.73 | 0.70 |
624 | 0.67 | 0.68 | 0.68 | 0.66 | 0.63 | 0.81 | 0.79 | 0.76 | 0.73 | 0.70 |
348 | 0.67 | 0.68 | 0.68 | 0.66 | 0.63 | 0.81 | 0.79 | 0.77 | 0.73 | 0.68 |
207 | 0.67 | 0.69 | 0.68 | 0.66 | 0.63 | 0.81 | 0.79 | 0.76 | 0.73 | 0.69 |
Contact Area [20 mmHg] | ||||||||||
5664 | 0.69 | 0.67 | 0.67 | 0.65 | 0.61 | 0.83 | 0.81 | 0.80 | 0.76 | 0.76 |
1416 | 0.65 | 0.66 | 0.66 | 0.63 | 0.63 | 0.81 | 0.79 | 0.74 | 0.68 | 0.66 |
624 | 0.66 | 0.67 | 0.67 | 0.64 | 0.62 | 0.80 | 0.78 | 0.74 | 0.69 | 0.66 |
348 | 0.64 | 0.65 | 0.65 | 0.63 | 0.59 | 0.76 | 0.76 | 0.70 | 0.65 | 0.64 |
207 | 0.63 | 0.64 | 0.64 | 0.62 | 0.59 | 0.74 | 0.74 | 0.68 | 0.64 | 0.65 |
Peak pressure | ||||||||||
5664 | 0.62 | 0.63 | 0.63 | 0.61 | 0.58 | 0.82 | 0.80 | 0.78 | 0.73 | 0.68 |
1416 | 0.63 | 0.64 | 0.64 | 0.62 | 0.58 | 0.85 | 0.84 | 0.81 | 0.77 | 0.73 |
624 | 0.66 | 0.66 | 0.67 | 0.64 | 0.60 | 0.86 | 0.84 | 0.82 | 0.77 | 0.74 |
348 | 0.66 | 0.67 | 0.68 | 0.67 | 0.62 | 0.87 | 0.84 | 0.83 | 0.78 | 0.76 |
207 | 0.67 | 0.67 | 0.68 | 0.66 | 0.62 | 0.87 | 0.85 | 0.84 | 0.78 | 0.76 |
Peak pressure gradient | ||||||||||
5664 | 0.63 | 0.62 | 0.63 | 0.63 | 0.59 | 0.83 | 0.65 | 0.64 | 0.61 | 0.58 |
1416 | 0.62 | 0.63 | 0.63 | 0.61 | 0.58 | 0.83 | 0.82 | 0.77 | 0.72 | 0.68 |
624 | 0.63 | 0.64 | 0.63 | 0.62 | 0.58 | 0.84 | 0.82 | 0.79 | 0.73 | 0.70 |
348 | 0.65 | 0.65 | 0.66 | 0.62 | 0.58 | 0.85 | 0.82 | 0.80 | 0.74 | 0.73 |
207 | 0.64 | 0.67 | 0.66 | 0.64 | 0.61 | 0.85 | 0.83 | 0.80 | 0.74 | 0.73 |
Total Accuracy [%] | ||
---|---|---|
N Sensors | Foam Mattress | Air Cell Mattress |
5664 | 71 | 86 |
1416 | 71 | 88 |
624 | 71 | 84 |
348 | 63 | 87 |
207 | 63 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caggiari, S.; Jiang, L.; Filingeri, D.; Worsley, P. Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying. Sensors 2023, 23, 6872. https://doi.org/10.3390/s23156872
Caggiari S, Jiang L, Filingeri D, Worsley P. Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying. Sensors. 2023; 23(15):6872. https://doi.org/10.3390/s23156872
Chicago/Turabian StyleCaggiari, Silvia, Liudi Jiang, Davide Filingeri, and Peter Worsley. 2023. "Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying" Sensors 23, no. 15: 6872. https://doi.org/10.3390/s23156872
APA StyleCaggiari, S., Jiang, L., Filingeri, D., & Worsley, P. (2023). Optimization of Spatial and Temporal Configuration of a Pressure Sensing Array to Predict Posture and Mobility in Lying. Sensors, 23(15), 6872. https://doi.org/10.3390/s23156872