A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge
Abstract
:1. Introduction
2. Phase-Resolved Partial Discharge (PRPD)
3. Experimental Setup
3.1. Experimental Platform Design
3.2. Sensitivity Test Platform Design
4. System Design
4.1. Hardware Design
- (1)
- Dual-channel quadrature down-converter
- (2)
- Dual-channel data acquisition
4.2. Noise Reduction Algorithm
5. Experimental Testing
5.1. Noise Reduction Treatment
5.2. Identification of PD Type
5.3. Sensitivity Test
5.4. On-Site Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, Y.; Wang, Z.; Liu, L.; Xu, Y.; Yang, Y.; Liu, S.; Zhou, F.; He, S.; Li, C. Defects and failure types of solid insulation in gas-insulated switchgear: In situ study and case analysis. High Volt. 2021, 7, 158–164. [Google Scholar] [CrossRef]
- Stone, G.C.; Boulter, E.A.; Culbert, I.; Dhirani, H. Electrical insulation for rotating machines-design, evaluation, aging, testing, and repair—Book Review. IEEE Electr. Insul. Mag. 2004, 20, 65. [Google Scholar] [CrossRef]
- Paoletti, G.J.; Golubev, A. Partial discharge theory and technologies related to medium-voltage electrical equipment. IEEE Trans. Ind. Appl. 2001, 37, 90–103. [Google Scholar] [CrossRef]
- Khavari, E.; Hassan Hosseini, S.M.; Gharehpetian, G.B. Recovery of Partial Discharge Signal and Noise Cancellation in Power Transformer Using Radial Basis Function. IEEE Trans. Instrum. Meas. 2020, 69, 3388–3394. [Google Scholar] [CrossRef]
- Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and Partial Discharge Analysis of Power Transformers: A Literature Review. IEEE Access 2021, 9, 64587–64605. [Google Scholar] [CrossRef]
- Gao, W.; Ding, D.; Liu, W. Research on the Typical Partial Discharge Using the UHF Detection Method for GIS. IEEE Trans. Power Deliv. 2011, 26, 2621–2629. [Google Scholar] [CrossRef]
- Nagesh, V.; Gururaj, B.I. Evaluation of digital filters for rejecting discrete spectral interference in on-site PD measurements. IEEE Trans. Electr. Insul. 1993, 28, 73–85. [Google Scholar] [CrossRef]
- Sher Zaman, K.; Zhu, D.; Jin, X.; Tan, K. A new adaptive technique for on-line partial discharge monitoring. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 700–707. [Google Scholar] [CrossRef]
- Sriram, S.; Nitin, S.; Prabhu, K.M.M.; Bastiaans, M.J. Signal denoising techniques for partial discharge measurements. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1182–1191. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Trinchero, R.; Stievano, I.S.; Li, H.; Xie, Y.-Z. An Automatic Tool for Partial Discharge De-Noising via Short-Time Fourier Transform and Matrix Factorization. IEEE Trans. Instrum. Meas. 2022, 71, 3528512. [Google Scholar] [CrossRef]
- Yusoff, N.A.; Isa, M.; Hamid, H.; Adzman, M.R.; Ayop, N.N. Denoising technique for partial discharge signal: A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform. In Proceedings of the 2016 IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 28–29 November 2016. [Google Scholar]
- Huijuan, H.; Gehao, S.; Xiuchen, J. Robust Time Delay Estimation Method for Locating UHF Signals of Partial Discharge in Substation. IEEE Trans. Power Deliv. 2013, 28, 1960–1968. [Google Scholar] [CrossRef]
- Bruni, V.; Vitulano, D. Wavelet-based signal de-noising via simple singularities approximation. Signal Process. 2006, 86, 859–876. [Google Scholar] [CrossRef]
- Ghorat, M.; Gharehpetian, G.B.; Latifi, H.; Hejazi, M.A. A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform. IEEE Trans. Instrum. Meas. 2018, 67, 2262–2272. [Google Scholar] [CrossRef]
- Zhang, H.; Blackburn, T.R.; Phung, B.t.; Sen, D. A novel wavelet transform technique for on-line partial discharge measurements. 1. WT de-noising algorithm. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 3–14. [Google Scholar] [CrossRef]
- Du, S.; Chen, S. Study on Optical Fiber Gas-Holdup Meter Signal Denoising Using Improved Threshold Wavelet Transform. IEEE Access 2023, 11, 18794–18804. [Google Scholar] [CrossRef]
- Gotz, D.; Petzold, F.; Putter, H.; Markalous, S.; Stephan, M. Localized PRPD pattern for defect recognition on MV and HV cables. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016. [Google Scholar]
- Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Oskuoee, M. Partial discharge pattern recognition via sparse representation and ANN. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1061–1070. [Google Scholar] [CrossRef]
- Azirani, M.A.; Werle, P.; Akbari, A.; Jahangir, H.; Szczechowski, J.M. An investigation on PRPD patterns generated by the UHF measurement technique for power transformers. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017. [Google Scholar]
- Araújo, R.C.F.; de Oliveira, R.M.S.; Brasil, F.S.; Barros, F.J.B. Novel Features and PRPD Image Denoising Method for Improved Single-Source Partial Discharges Classification in On-Line Hydro-Generators. Energies 2021, 14, 3267. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Li, P.; Yang, S.; Tian, Y. An Ultrahigh Frequency Partial Discharge Signal De-Noising Method Based on a Generalized S-Transform and Module Time-Frequency Matrix. Sensors 2016, 16, 941. [Google Scholar] [CrossRef] [Green Version]
- Hoof, M.; Freisleben, B.; Patsch, R. PD source identification with novel discharge parameters using counterpropagation neural networks. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 17–32. [Google Scholar] [CrossRef]
- Gulski, E.; Kreuger, F.H. Computer-aided recognition of discharge sources. IEEE Trans. Electr. Insul. 1992, 27, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Si, W.-R.; Fu, C.-Z.; Gao, K.; Zhang, J.-M.; He, L.; Bao, H.-L.; Wu, X.-Y. Research on a General Fast Analysis Algorithm Model for Pd Acoustic Detection System: The Algorithm Model Design and Its Application. In Proceedings of the 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; pp. 22–26. [Google Scholar]
- De Kock, N.; Coric, B.; Pietsch, R. UHF PD detection in gas-insulated switchgear-suitability and sensitivity of the UHF method in comparison with the IEC 270 method. IEEE Electr. Insul. Mag. 1996, 12, 20–26. [Google Scholar] [CrossRef]
- Jahangir, H.; Akbari, A.; Werle, P.; Szczechowski, J. UHF PD measurements on power transformers-advantages and limitations. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3933–3940. [Google Scholar] [CrossRef]
- Aboo, Z.; Singaravelu, Y.; Rasheed, R. Diagnostic Technique with UHF PD Monitoring of HV GIS in Smart Grid. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; pp. 1–5. [Google Scholar]
- Judd, M.D.; Farish, O. A pulsed GTEM system for UHF sensor calibration. IEEE Trans. Instrum. Meas. 1998, 47, 875–880. [Google Scholar] [CrossRef]
- Judd, M.D.; Farish, O.; Pearson, J.S.; Breckenridge, T.; Pryor, B.M. Power transformer monitoring using UHF sensors: Installation and testing. In Proceedings of the Conference Record of the 2000 IEEE International Symposium on Electrical Insulation (Cat. No.00CH37075), Anaheim, CA, USA, 5 April 2000. [Google Scholar]
- Judd, M.D.; Coventry, O.F.P.F. UHF Couplers for GIS Sensitivity and Specification. In Proceedings of the 10th Int. Symp. on High Voltage Engineering (ISH 1997), Montreal, QC, Canada, 25–29 August 1997. [Google Scholar]
- Lu, X.; Hou, K.; Li, Q.; Si, W.; Fu, C. Statistical Analysis and Discharge Type Identification of Partial Discharge Pulse Parameters of Oil-Paper Insulation Based on Ultra-wideband. In Proceedings of the 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, China, 15–17 October 2021; pp. 1–6. [Google Scholar]
- Li, W.; Chen, G.; Chen, H.; Wang, K.; Li, C. The smart grid UHF partial discharge on line monitor design. Meas. Control Technol. Instrum. 2015, 41, 57–59. [Google Scholar] [CrossRef]
- LI, D.; TANG, Z. Research on the Calibration of UHF Partial Discharge Detection System in GIS. High Volt. Eng. 2015, 41, 3348–3354. [Google Scholar] [CrossRef]
- Wensheng, G.; Dengwei, D.; Weidong, L.; Xinhong, H. Analysis of the intrinsic characteristics of the partial discharge induced by typical defects in GIS. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 782–790. [Google Scholar] [CrossRef]
- Qifu, L.; Ruijiao, Q.; Zhiguo, T.; Xinwang, L. Partial Discharge Ultra-High Frequency Detection Technology; China Electric Power Press: Beijing, China, 2020. [Google Scholar]
- Tianzheng, W.; Jian, Z.; Yanpeng, L.; Zhiguo, T.; Helin, X. Discussion on the Standardization of UHF PD Dection. Mod. Electr. Power 2014, 31, 74–78. [Google Scholar] [CrossRef]
- Gao, M. Research on Application of GIS Partial Discharge Detection Technology. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Zheng, W.; Li, G.; Shu, S. Review of Calibration Methods for UHF Detection System Performance of GIS Partial Discharge. Electr. Eng. 2016, 10, 1–7. [Google Scholar]
Injected Voltage Value Vi (V) | Minimum Transient Electric Field Strength Peak (V/m) | PD System Response Value dBm/mV | |
---|---|---|---|
Conventional noise reduction treatment | 0 | 0 | 0.1042 |
0.2 | 0.409 | 0.1103 | |
0.4 | 0.811 | 0.1224 | |
0.6 | 1.143 | 0.1306 | |
0.8 | 1.8 | 0.2401 | |
1.0 | 1.991 | 0.3106 | |
System sensitivity | 1.8 | ||
Secondary noise reduction using PRPD noise reduction algorithm | 0 | 0 | 0.1242 |
0.2 | 0.379 | 0.1307 | |
0.4 | 0.759 | 0.1324 | |
0.6 | 1.138 | 0.2302 | |
0.8 | 1.517 | 0.3455 | |
1.0 | 1.897 | 0.4406 | |
System sensitivity | 1.138 |
Discharge Type | After Using PRPD Noise Reduction Algorithm (UHF Method) | Digital PD Monitoring System (Coupled Capacitor Method) |
---|---|---|
Tip Discharge | 7.036 | 7.3 |
Air Gap Discharge | 30.862 | 30.5 |
Suspension discharge | 31.998 | 32.5 |
Particle discharge | 15.146 | 15.9 |
Surface discharge | 28.034 | 29.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Chen, G.; Li, W.; Xu, M.; Xie, W.; Chen, C.; Wang, W.; Zhu, Y. A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge. Sensors 2023, 23, 6763. https://doi.org/10.3390/s23156763
Fang W, Chen G, Li W, Xu M, Xie W, Chen C, Wang W, Zhu Y. A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge. Sensors. 2023; 23(15):6763. https://doi.org/10.3390/s23156763
Chicago/Turabian StyleFang, Weixing, Guojin Chen, Wenxin Li, Ming Xu, Wei Xie, Chang Chen, Wanqiang Wang, and Yucheng Zhu. 2023. "A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge" Sensors 23, no. 15: 6763. https://doi.org/10.3390/s23156763
APA StyleFang, W., Chen, G., Li, W., Xu, M., Xie, W., Chen, C., Wang, W., & Zhu, Y. (2023). A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge. Sensors, 23(15), 6763. https://doi.org/10.3390/s23156763