Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model
Abstract
1. Introduction
1.1. Background
1.2. Related Work
1.3. Objectives and Outline
2. Methods
2.1. Recursive Bayesian Estimation
2.1.1. Prediction
2.1.2. Observation
2.1.3. Correction
2.2. Particle Filter
2.3. Zero-Velocity Update Method
2.4. Sensor Fusion
3. Calculation
3.1. Probabilistic Step Model
- An individual’s step sizes while walking a long, quasi-straight path are normally distributed;
- The direction of those steps is also (locally) Gaussian;
- The random fluctuations in the direction and size of a step are independent.
3.2. Globalization, Prediction, and Information Fusion
3.3. A Posteriori PDF Maximization via Gradient Ascent
4. Results
4.1. Monte Carlo Simulations
4.2. Accuracy and Efficiency Trade-Off Study
4.3. Summary
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Vasconez, J.P.; Kantor, G.A.; Cheein, F.A.A. Human–Robot Interaction in Agriculture: A Survey and Current Challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Sharkawy, A.N. Human-Robot Interaction: Applications. arXiv 2021, arXiv:2102.00928. [Google Scholar]
- Steckenrider, J.J. Adaptive Aerial Localization Using Lissajous Search Patterns. IEEE Trans. Robot. 2021, 38, 2094–2113. [Google Scholar] [CrossRef]
- Hambuchen, K.; Marquez, J.; Fong, T. A Review of NASA Human-Robot Interaction in Space. Curr. Robot. Rep. 2021, 2, 265–272. [Google Scholar] [CrossRef]
- Berx, N.; Decré, W.; Morag, I.; Chemweno, P.; Pintelon, L. Identification and Classification of Risk Factors for Human-Robot Collaboration from a System-Wide Perspective. Comput. Ind. Eng. 2022, 163, 107827. [Google Scholar] [CrossRef]
- ISO/TS 15066:2016; Robots and Robotic Devices—Collaborative Robots. International Organization for Standardization: Geneva, Switzerland, 2016.
- Xu, Y.; Shmaliy, Y.S.; Li, Y.; Chen, X. UWB-Based Indoor Human Localization with Time-Delayed Data Using EFIR Filtering. IEEE Access 2017, 5, 16676–16683. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Z.; Xu, Y.; Zhao, Y.; Liu, Y. Human Mobility Enhances Global Positioning Accuracy for Mobile Phone Localization. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 131–141. [Google Scholar] [CrossRef]
- Husen, M.N.; Lee, S. Indoor Human Localization with Orientation using WiFi Fingerprinting. In Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication, Siem Reap, Cambodia, 9–11 January 2014; pp. 1–6. [Google Scholar]
- Xu, Y.; Shmaliy, Y.S.; Li, Y.; Chen, X.; Guo, H. Indoor INS/LiDAR-Based Robot Localization with Improved Robustness Using Cascaded FIR Filter. IEEE Access 2019, 7, 34189–34197. [Google Scholar] [CrossRef]
- Hou, X.; Bergmann, J. Pedestrian Dead Reckoning with Wearable Sensors: A Systematic Review. IEEE Sens. J. 2021, 21, 143–152. [Google Scholar] [CrossRef]
- Sadruddin, H.; Mahmoud, A.; Atia, M.M. Enhancing Body-Mounted LiDAR SLAM Using An IMU-based Pedestrian Dead Reckoning (PDR) Model. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 901–904. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, K.I.K.; Salcic, Z. A Resetting Approach for INS and UWB Sensor Fusion Using Particle Filter for Pedestrian Tracking. IEEE Trans. Instrum. Meas. 2020, 69, 5914–5921. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, Y.; Guo, X.; Chen, X.; Cao, H.; Tang, J.; Li, J.; Liu, J. Seamless GPS/Inertial Navigation System Based on Self-Learning Square-Root Cubature Kalman Filter. IEEE Trans. Ind. Electron. 2021, 68, 499–508. [Google Scholar] [CrossRef]
- Ahmed, A.; Roumeliotis, S. A Visual-Inertial Approach to Human Gait Estimation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 4614–4621. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Jao, C.S.; Kassas, Z.M.; Shkel, A.M. A Pedestrian Indoor Navigation System Using Deep-Learning-Aided Cellular Signals and ZUPT-Aided Foot-Mounted IMUs. IEEE Sens. J. 2021, 22, 5188–5198. [Google Scholar] [CrossRef]
- Ali, R.; Liu, R.; Nayyar, A.; Qureshi, B.; Cao, Z. Tightly Coupling Fusion of UWB Ranging and IMU Pedestrian Dead Reckoning for Indoor Localization. IEEE Access 2021, 9, 164206–164222. [Google Scholar] [CrossRef]
- Farag, W. Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters. J. Eng. Res. 2022, 10. [Google Scholar] [CrossRef]
- Verentsov, S.; Magerramov, E.; Vinogradov, V.; Gizatullin, R.; Alekseenko, A.; Kholodov, Y.; Nikolskiy, E. Bayesian Framework for Vehicle Localization Using Crowdsourced Data. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 215–219. [Google Scholar] [CrossRef]
- Xiao, G.; Song, X.; Cao, H.; Zhao, S.; Dai, H.; Li, M. Augmented Extended Kalman Filter with Cooperative Bayesian Filtering and Multi-Models Fusion for Precise Vehicle Localisations. IET Radar Sonar Navig. 2020, 14, 1815–1826. [Google Scholar] [CrossRef]
- Banerjee, P.; Corbetta, M. In-Time UAV Flight-Trajectory Estimation and Tracking Using Bayesian Filters. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L. GPS/IMU Fusion Localization Based on Attention-LSTM Networks and Sliding Windows. In Proceedings of the International Conference on Signal Processing and Communication Technology (SPCT 2022), Harbin, China, 23–25 December; SPIE: Bellingham, WA, USA, 2023; Volume 12615, pp. 372–378. [Google Scholar]
- Chung, S.; Lim, J.; Noh, K.J.; Kim, G.; Jeong, H. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning. Sensors 2019, 19, 1716. [Google Scholar] [CrossRef]
- Xiong, P.; He, K.; Wu, E.Q.; Zhu, L.M.; Song, A.; Liu, P.X. Human-Exploratory-Procedure-Based Hybrid Measurement Fusion for Material Recognition. IEEE/ASME Trans. Mechatronics 2022, 27, 1093–1104. [Google Scholar] [CrossRef]
- Xiong, P.; Tong, X.; Liu, P.X.; Song, A.; Li, Z. Robotic Object Perception Based on Multispectral Few-Shot Coupled Learning. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Anderson, R.B.; Pryor, M.; Abeyta, A.; Landsberger, S. Mobile Robotic Radiation Surveying with Recursive Bayesian Estimation and Attenuation Modeling. IEEE Trans. Autom. Sci. Eng. 2020, 19, 410–424. [Google Scholar] [CrossRef]
- Hooten, M.B.; Johnson, D.S.; Brost, B.M. Making Recursive Bayesian Inference Accessible. Am. Stat. 2021, 75, 185–194. [Google Scholar] [CrossRef]
- Tsai, C.; Kurz, L. An Adaptive Robustizing Approach to Kalman Filtering. Automatica 1983, 19, 279–288. [Google Scholar] [CrossRef]
- Elfring, J.; Torta, E.; van de Molengraft, R. Particle Filters: A Hands-On Tutorial. Sensors 2021, 21, 438. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.; Furukawa, T. Information Measure for the Optimal Control of Target Searching via the Grid-based Method. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 2075–2080. [Google Scholar]
- Tabrikian, J.; Dubnov, S.; Dickalov, Y. Maximum A-Posteriori Probability Pitch Tracking in Noisy Environments using Harmonic Model. IEEE Trans. Speech Audio Process. 2004, 12, 76–87. [Google Scholar] [CrossRef]
- Pham, M.; Yang, D.; Sheng, W. A Sensor Fusion Approach to Indoor Human Localization Based on Environmental and Wearable Sensors. IEEE Trans. Autom. Sci. Eng. 2019, 16, 339–350. [Google Scholar] [CrossRef]
- Steckenrider, J.J.; Crawford, B.; Zheng, P. GPS and IMU Fusion for Human Gait Estimation. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–7. [Google Scholar]
- Elwell, J. Inertial navigation for the urban warrior. In Digitization of the Battlespace IV; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3709, pp. 196–204. [Google Scholar]
- Potter, M.V.; Ojeda, L.V.; Perkins, N.C.; Cain, S.M. Effect of IMU Design on IMU-Derived Stride Metrics for Running. Sensors 2019, 19, 2601. [Google Scholar] [CrossRef]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J. Biomechanical Changes at the Hip, Knee, and Ankle Joints during Gait are Associated with Knee Osteoarthritis Severity. J. Orthop. Res. 2008, 26, 332–341. [Google Scholar] [CrossRef]
IMU | GPS | |
---|---|---|
Bias | ||
Covariance |
1/4 | 1/4 | 1/2 | 2 | 4 | |
IMU | 110.426 | 125.644 | 111.644 | 128.324 | 123.102 |
IMU+MFF | 0.928 | 1.128 | 1.278 | 1.758 | 1.981 |
IMU+PF | 0.839 | 1.035 | 1.202 | 1.582 | 1.794 |
GPS | 3.108 | 4.422 | 6.268 | 8.756 | 142.469 |
GPS+MFF | 2.894 | 3.554 | 5.941 | 8.933 | 11.332 |
GPS+PF | 1.719 | 2.439 | 3.950 | 6.339 | 12.759 |
GPS+IMU | 0.776 | 0.988 | 1.169 | 1.513 | 1.734 |
GPS+IMU+MFF | 0.905 | 1.109 | 1.260 | 1.745 | 1.965 |
GPS+IMU+PF | 0.817 | 1.015 | 1.190 | 1.564 | 1.780 |
1/2 | 1/4 | 1/2 | 2 | 4 | |
IMU | 164.980 | 140.749 | 144.114 | 143.172 | 137.359 |
IMU+MFF | 1.322 | 1.398 | 1.599 | 2.014 | 2.950 |
IMU+PF | 1.197 | 1.236 | 1.403 | 1.702 | 2.543 |
GPS | 3.099 | 4.377 | 6.199 | 8.935 | 12.328 |
GPS+MFF | 2.716 | 3.979 | 5.634 | 8.569 | 11.660 |
GPS+PF | 1.803 | 2.568 | 3.741 | 5.398 | 14.148 |
GPS+IMU | 1.088 | 1.159 | 1.312 | 1.619 | 2.392 |
GPS+IMU+MFF | 1.239 | 1.364 | 1.549 | 1.971 | 2.907 |
GPS+IMU+PF | 1.134 | 1.202 | 1.372 | 1.674 | 2.511 |
1/4 | 1/2 | 2 | 4 | ||
IMU | 186.437 | 173.919 | 165.588 | 185.337 | 149.041 |
IMU+MFF | 1.679 | 1.764 | 2.202 | 2.598 | 2.965 |
IMU+PF | 1.430 | 1.496 | 1.835 | 2.157 | 2.285 |
GPS | 3.133 | 4.396 | 6.213 | 8.793 | 12.436 |
GPS+MFF | 3.030 | 4.191 | 5.945 | 8.339 | 9.092 |
GPS+PF | 1.852 | 2.469 | 3.650 | 6.045 | 9.035 |
GPS+IMU | 1.273 | 1.379 | 1.683 | 1.977 | 2.119 |
GPS+IMU+MFF | 1.531 | 1.669 | 2.135 | 2.546 | 2.916 |
GPS+IMU+PF | 1.329 | 1.430 | 1.779 | 2.100 | 2.249 |
2 | 1/4 | 1/2 | 2 | 4 | |
IMU | 256.671 | 268.211 | 262.768 | 251.444 | 238.352 |
IMU+MFF | 2.153 | 2.583 | 3.452 | 4.150 | 4.539 |
IMU+PF | 1.725 | 1.982 | 2.644 | 3.146 | 3.560 |
GPS | 3.111 | 4.383 | 6.312 | 8.746 | 12.296 |
GPS+MFF | 2.777 | 4.346 | 5.866 | 7.419 | 10.029 |
GPS+PF | 1.790 | 2.512 | 4.015 | 6.799 | 9.307 |
GPS+IMU | 1.455 | 1.718 | 2.286 | 2.760 | 3.221 |
GPS+IMU+MFF | 1.885 | 2.360 | 3.217 | 3.918 | 4.415 |
GPS+IMU+PF | 1.552 | 1.844 | 2.501 | 3.029 | 3.480 |
4 | 1/4 | 1/2 | 2 | 4 | |
IMU | 352.261 | 436.073 | 316.520 | 444.468 | 365.252 |
IMU+MFF | 2.404 | 3.561 | 3.619 | 5.288 | 6.235 |
IMU+PF | 1.858 | 2.778 | 2.688 | 4.203 | 4.692 |
GPS | 3.104 | 4.354 | 6.186 | 8.911 | 12.406 |
GPS+MFF | 2.711 | 4.110 | 5.792 | 8.191 | 10.713 |
GPS+PF | 1.621 | 2.503 | 3.347 | 7.061 | 10.517 |
GPS+IMU | 1.520 | 2.136 | 2.209 | 3.340 | 3.870 |
GPS+IMU+MFF | 2.032 | 3.072 | 3.370 | 4.877 | 5.952 |
GPS+IMU+PF | 1.632 | 2.443 | 2.516 | 3.890 | 4.491 |
Measurement | Computation | Accuracy |
---|---|---|
IMU | Low | Very Inaccurate |
IMU+MFF | Low | Somewhat Accurate |
IMU+PF | Low | Somewhat Accurate |
GPS | Very low | Somewhat Inaccurate |
GPS+MFF | Very low | Somewhat Inaccurate |
GPS+PF | Very low | Somewhat Inaccurate |
GPS+IMU | Low | Most Accurate |
GPS+IMU+MFF | Moderate | More Accurate |
GPS+IMU+PF | Highest | More Accurate |
Measurement | Pros | Cons |
IMU | Easy to implement | Very inaccurate |
IMU+MFF | Good balance between ease of implementation and accuracy | Neglects GPS data |
IMU+PF | Good balance between ease of implementation and accuracy | Neglects GPS data |
GPS | Easy to implement | Inacurate, neglects IMU data |
GPS+MFF | More accurate than GPS-only | Neglects IMU data |
GPS+PF | More accurate than GPS-only | Neglects IMU data |
GPS+IMU | Accuracy | Trajectory is not necessarily intuitive |
GPS+IMU+MFF | Trajectory has smoothing effect, less computation than PF | Slightly less accurate than PF, RMSE is reduced when model is implemented |
GPS+IMU+PF | Trajectory has smoothing effect, lower RMSE than MFF | Higher computation than MFF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabb, E.; Steckenrider, J.J. Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model. Sensors 2023, 23, 6494. https://doi.org/10.3390/s23146494
Rabb E, Steckenrider JJ. Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model. Sensors. 2023; 23(14):6494. https://doi.org/10.3390/s23146494
Chicago/Turabian StyleRabb, Ethan, and John Josiah Steckenrider. 2023. "Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model" Sensors 23, no. 14: 6494. https://doi.org/10.3390/s23146494
APA StyleRabb, E., & Steckenrider, J. J. (2023). Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model. Sensors, 23(14), 6494. https://doi.org/10.3390/s23146494