Concentration Retrieval in a Calibration-Free Wavelength Modulation Spectroscopy System Using Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Theory of WMS-2f/1f
2.2. PSO-Based WMS Concentration Retrieval Technique
3. Simulation Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, T.; Gao, G.; Wang, M. Simultaneous detection of atmospheric CH4 and CO using a single tunable multi-mode diode laser at 2.33 µm. Opt. Express 2016, 24, 859–873. [Google Scholar] [CrossRef]
- Shao, L.; Fang, B.; Zheng, F.; Qiu, X.; He, Q.; Wei, J. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 µm DFB laser. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, C.S.; Schultz, I.A.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Scanned-wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B 2014, 116, 717–727. [Google Scholar] [CrossRef]
- Mathews, G.C.; Goldenstein, C.S. Wavelength-modulation spectroscopy for MHz thermometry and H2O sensing in combustion gases of energetic materials. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1609. [Google Scholar]
- He, Q.; Dang, P.; Liu, Z.; Zheng, C.; Wang, Y. TDLAS–WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber. Opt. Quant. Electron. 2017, 49, 115. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Sun, P.; Pang, T.; Xia, H.; Cui, X.; Guo, Q.; Sigrist, M.W.; Shu, C.; Shu, Z. A dual-gas sensor for simultaneous detection of methane and acetylene based on time-sharing scanning assisted wavelength modulation spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118495. [Google Scholar] [CrossRef]
- Luo, Q.; Song, C.; Yang, C.; Gui, W.; Sun, Y.; Jeffrey, Z. Headspace oxygen concentration measurement for pharmaceutical glass bottles in open-path optical environment using TDLAS/WMS. IEEE Trans. Instrum. Meas. 2019, 69, 5828–5842. [Google Scholar] [CrossRef] [Green Version]
- Hangauer, A.; Chen, J.; Strzoda, R.; Ortsiefer, M.; Amann, M.C. Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser. Opt. Lett. 2008, 33, 1566–1568. [Google Scholar] [CrossRef]
- Schilt, S.; Thevenaz, L.; Robert, P. Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 2003, 42, 6728–6738. [Google Scholar] [CrossRef]
- Du, Y.; Lan, L.; Ding, Y.; Peng, Z. Measurement of the absolute absorbance based on wavelength modulation spectroscopy. Appl. Phys. B 2017, 123, 205. [Google Scholar] [CrossRef]
- Zhu, C.; Chu, T.; Liu, Y.; Wang, P. Modeling of Scanned Wavelength Modulation Spectroscopy Considering Nonlinear Behavior of Intensity Response. IEEE Sens. J. 2022, 22, 2301–2308. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.; Hu, M.; Hu, M.; Wei, Y.; Liang, J.; Kan, R.; Wang, Q. A Robust Optical Sensor for Remote Multi-Species Detection Combining Frequency-Division Multiplexing and Normalized Wavelength Modulation Spectroscopy. Sensors 2021, 21, 1073. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Li, J.; Du, Z. Simultaneous Measurement of Multiparameter of Diesel Engine Exhaust Based on Mid-infrared Laser Absorption Spectroscopy. IEEE. Trans. Instrum. Meas. 2023, 72, 7003508. [Google Scholar] [CrossRef]
- Zheng, D.; He, D.; Du, Y.; Li, J.; Zhang, M.; Ding, Y.; Peng, Z. Experimental study of the methane/hydrogen/ammonia and ethylene/ammonia oxidation: Multi-parameter measurements using a shock tube combined with laser absorption spectroscopy. Combust. Flame 2023, 254, 112830. [Google Scholar] [CrossRef]
- Upadhyay, A.; Wilson, D.; Lengden, M.; Chakraborty, A.L.; Stewart, G.; Johnstone, W. Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization. IEEE Photonics J. 2017, 9, 6801217. [Google Scholar] [CrossRef] [Green Version]
- Duffin, K.; McGettrick, A.J.; Johnstone, W.; Stewart, G.; Moodie, D.G. Tunable Diode-Laser Spectroscopy with Wavelength Modulation: A Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line Shapes. J. Light. Technol. 2007, 25, 3114–3125. [Google Scholar] [CrossRef]
- McGettrick, A.J.; Duffin, K.; Johnstone, W.; Stewart, G.; Moodie, D.G. Tunable Diode Laser Spectroscopy with Wavelength Modulation: A Phasor Decomposition Method for Calibration-Free Measurements of Gas Concentration and Pressure. J. Light. Technol. 2008, 26, 432–440. [Google Scholar] [CrossRef]
- Qu, Z.; Ghorbani, R.; Valiev, D.; Schmidt, F.M. Calibration-free scanned wavelength modulation spectroscopy—Application to H2O and temperature sensing in flames. Opt. Express 2015, 23, 16492–16499. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.; Wang, A. Calibration-free wavelength modulation spectroscopy: Symmetry approach and residual amplitude modulation normalization. Appl. Opt. 2016, 55, 4446–4455. [Google Scholar] [CrossRef]
- Upadhyay, A.; Lengden, M.; Wilson, D.; Humphries, G.S.; Crayford, A.P.; Pugh, D.G.; Johnson, M.P.; Stewart, G.; Johnstone, W. A New RAM Normalized 1f -WMS Technique for the Measurement of Gas Parameters in Harsh Environments and a Comparison With 2f/1f. IEEE Photonics J. 2018, 10, 6804611. [Google Scholar] [CrossRef]
- Li, R.; Li, F.; Lin, X.; Yu, X. Linear calibration-free wavelength modulation spectroscopy. Microw. Opt. Technol. Lett. 2021, 65, 1024–1030. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, A.L. Intensity Modulation-Normalized Calibration-Free 1f and 2f Wavelength Modulation Spectroscopy. IEEE Sens. J. 2020, 20, 12691–12701. [Google Scholar] [CrossRef]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 2006, 45, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Mei, L.; Deng, H.; Xu, Z.; Chen, B.; Kan, R. Wavelength modulation spectroscopy by employing the first harmonic phase angle method. Opt. Express 2019, 27, 12137–12146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, P.; Chu, T.; Peng, F.; Sun, Y. Second Harmonic Phase Angle Method Based on WMS for Background-Free Gas Detection. IEEE Photonics J. 2021, 13, 6800406. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Strand, C.L.; Schultz, I.A.; Sun, K.; Jeffries, J.B.; Hanson, R.K. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 2014, 53, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, H.; Sun, J.; Yu, B.; Fischer, H. Simultaneous atmospheric CO, N2O and H2O detection using a single quantum cascade laser sensor based on dual-spectroscopy techniques. Sens. Actuators B Chem. 2016, 231, 723–732. [Google Scholar] [CrossRef]
- Raza, M.; Ma, L.; Yao, S.; Chen, L.; Ren, W. High-temperature dual-species (CO/NH3) detection using calibration-free-scanned-wavelength-modulation spectroscopy at 2.3 μm. Fuel 2021, 305, 121591. [Google Scholar] [CrossRef]
- Wei, W.; Chang, J.; Huang, Q.; Wang, Q.; Liu, Y.; Qin, Z. Water vapor concentration measurements using TDALS with wavelength modulation spectroscopy at varying pressures. Sens. Rev. 2017, 37, 172–179. [Google Scholar] [CrossRef]
- Chao, X.; Jeffries, J.B.; Hanson, R.K. Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers. Meas. Sci. Technol. 2009, 20, 115201. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
m | modulation index | 1.5 |
L | absorption path length | 20 cm |
ψ1 | phase shift between FM and linear IM | 0.6 π rad |
ψ2 | phase shift between FM and nonlinear IM | 0.5 π rad |
isotopologue | 12C2H2 | |
νc | line-center frequency of transition | 6523.8792 cm−1 |
Δνc/2 | half width at half-maximum | 0.0777 cm−1 |
S | line strength | 1.035 × 10−20 cm/mol |
T | arbitrary temperature | 296 K |
P | total pressure | 1 atm |
i1 | linear IM depth at line-center frequency | 0.15 |
i2 | nonlinear IM depth at line-center frequency | 3 × 10−3 |
Number of Particles: 1000 | |
---|---|
Free Parameters | Region of Parameters |
m [cm−1] | 1.0–2.0 |
c [ppmv] | 390.6–488.3 |
i1 | 0.08–0.35 |
i2 | 0–0.007 |
ψ1 [π rad] | 0–1.0 |
ψ2 [π rad] | 0–1.0 |
Free Parameters | Expected Value | Predicted by the PSO Technique | Relative Errors |
---|---|---|---|
m [cm−1] | 1.500 | 1.500 | 0.00 |
c [ppmv] | 400.0 | 400.5 | 0.13% |
i1 | 0.150 | 0.149 | 0.67% |
i2 | 0.003 | 0.003 | 0.00 |
ψ1 [π rad] | 0.600 | 0.601 | 0.17% |
ψ2 [π rad] | 0.500 | 0.500 | 0.00 |
Free Parameters | Initial Parameter Value |
---|---|
m [cm−1] | 1.4 |
c [ppmv] | 390.6 |
i1 | 0.15 |
i2 | 0.003 |
ψ1 [π rad] | 0.6 |
ψ2 [π rad] | 0.5 |
Free Parameters | Expected Value | Predicted by the LM Technique | Relative Errors |
---|---|---|---|
m [cm−1] | 1.500 | 1.529 | 1.93% |
c [ppmv] | 400.0 | 410.7 | 2.68% |
i1 | 0.150 | 0.1677 | 11.8% |
i2 | 0.003 | 0.0034 | 13.3% |
ψ1 [π rad] | 0.600 | 0.647 | 7.83% |
ψ2 [π rad] | 0.500 | 0.487 | 2.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Sun, Y.; Wang, P.; Zhu, C. Concentration Retrieval in a Calibration-Free Wavelength Modulation Spectroscopy System Using Particle Swarm Optimization Algorithm. Sensors 2023, 23, 6374. https://doi.org/10.3390/s23146374
Zhang T, Sun Y, Wang P, Zhu C. Concentration Retrieval in a Calibration-Free Wavelength Modulation Spectroscopy System Using Particle Swarm Optimization Algorithm. Sensors. 2023; 23(14):6374. https://doi.org/10.3390/s23146374
Chicago/Turabian StyleZhang, Tingting, Yongjie Sun, Pengpeng Wang, and Cunguang Zhu. 2023. "Concentration Retrieval in a Calibration-Free Wavelength Modulation Spectroscopy System Using Particle Swarm Optimization Algorithm" Sensors 23, no. 14: 6374. https://doi.org/10.3390/s23146374
APA StyleZhang, T., Sun, Y., Wang, P., & Zhu, C. (2023). Concentration Retrieval in a Calibration-Free Wavelength Modulation Spectroscopy System Using Particle Swarm Optimization Algorithm. Sensors, 23(14), 6374. https://doi.org/10.3390/s23146374