Ratio Indexes Based on Spectral Electroencephalographic Brainwaves for Assessment of Mental Involvement: A Systematic Review
Abstract
:1. Introduction
- What are the spectral EEG ratio indexes for mental assessment and how are they defined?
- How are they used in relation to the specific field of application, i.e., in relation to the subject’s activity?
- Is the spatial density of the EEG system used crucial for their computation?
- Are some electrodes more appropriate for their computation?
2. Materials and Methods
2.1. Literature Search Strategy and Design
- (1)
- movement* control, movement* response, movement* task*, motor control, motor task*, motor response, sensory control, sensory task*, sensory response, emotion*, mental state*, mental effort, mental fatigue, mental task*, mental load, mental function*, cognitive load, cognitive task*, cognitive effort, cognitive fatigue, cognitive function*, stress, attention, vigilance, working memory, language task*, language processing, language control;
- (2)
- EEG, electroencephalogra*;
- (3)
- wave*, frequency band*, oscillation*, rhythm*, frequency content, frequency range;
- (4)
- index*, indice*, characterization, marker*;
2.2. Selection of Documents
- healthy human subjects, where the condition of health is intended especially in relation to the absence of neurological and/or psychiatric disorders or alteration conditions;
- awake subjects;
- subjects not under the effect of drugs or mind-altering substances in general (i.e., alcohol, tobacco, caffeine, etc.);
- non-invasive EEG used for assessment of mental state;
- EEG characterized in the frequency domain through the brainwaves;
- frequency bands of EEG brainwaves characterized only by the power spectral density of the signal, specifically: the power spectral density of the delta frequency band (from this moment indicated as δ); the power spectral density of the theta frequency band (from this moment indicated as θ); the power spectral density of the alpha frequency band (from this moment indicated as α); the power spectral density of the sensory-motor rhythm (from this moment indicated as ); the power spectral density of the beta frequency band (from this moment indicated as β); the power spectral density of the gamma frequency band (from this moment indicated as γ). Power spectral density could be also expressed as sum or mean over different EEG channels;
- the involvement spectral EEG ratio index resulting from the ratio between the functions of power spectral densities of some EEG brainwaves, involving more than one brainwave and being different at numerator and denominator.
- studies involving animals;
- studies involving patients (subjects affected by a disease);
- studies involving subjects in a possibly altered state;
- studies involving sleeping subjects/patients;
- studies not considering noninvasive EEG;
- studies where EEG is not characterized according to brainwaves (delta, theta, alpha, sensory-motor rhythm, beta, gamma);
- studies where brainwaves are characterized by means other than power spectral density (δ, θ, α, , β, γ);
- studies not considering spectral EEG ratio indexes based on the spectral power of EEG-derived brainwaves, expressed as in the mathematical form of Equation (1):
2.3. Collection of Information
2.4. Quality Appraisal
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Pubmed
Appendix A.2. Scopus
Appendix A.3. Web of Science
Appendix A.4. IEEE Explore
References
- Apicella, A.; Arpaia, P.; Frosolone, M.; Improta, G.; Moccaldi, N.; Pollastro, A. EEG-based measurement system for monitoring student engagement in learning 4.0. Sci. Rep. 2022, 12, 5857. [Google Scholar] [CrossRef] [PubMed]
- Coelli, S.; Sclocco, R.; Barbieri, R.; Reni, G.; Zucca, C.; Bianchi, A.M. EEG-based index for engagement level monitoring during sustained attention. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Hyland, P.K.; Lee, R.A.; Mills, M.J. Mindfulness at work: A new approach to improving individual and organizational performance. Ind. Organ. Psychol. 2015, 8, 576–602. [Google Scholar] [CrossRef] [Green Version]
- Klonowicz, T. Mental workload and health: A latent threat. Int. J. Occup. Saf. Ergon. 1995, 1, 130–135. [Google Scholar] [CrossRef] [Green Version]
- McMahan, T.; Parberry, I.; Parsons, T.D. Evaluating Player Task Engagement and Arousal Using Electroencephalography. Procedia Manuf. 2015, 3, 2303–2310. [Google Scholar] [CrossRef] [Green Version]
- Seeck, M.; Koessler, L.; Bast, T.; Leijten, F.; Michel, C.; Baumgartner, C.; He, B.; Beniczky, S. The standardized EEG electrode array of the IFCN. Clin. Neurophysiol. 2017, 128, 2070–2077. [Google Scholar] [CrossRef]
- Klem, G.H.; Lüders, H.O.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol Suppl. 1999, 52, 3–6. [Google Scholar]
- Beniczky, S.; Schomer, D.L. Electroencephalography: Basic biophysical and technological aspects important for clinical applications. Epileptic Disord. 2020, 22, 697–715. [Google Scholar] [CrossRef] [PubMed]
- Stoyell, S.M.; Wilmskoetter, J.; Dobrota, M.A.; Chinappen, D.M.; Bonilha, L.; Mintz, M.; Brinkmann, B.H.; Herman, S.T.; Peters, J.M.; Vulliemoz, S.; et al. High-Density EEG in Current Clinical Practice and Opportunities for the Future. J. Clin. Neurophysiol. 2021, 38, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Criscuolo, S.; Benedetto, E.D.; Masciullo, A.; Pesola, M.; Schiavoni, R.; Invitto, S. A Method for Optimizing the Artifact Subspace Reconstruction Performance in Low-Density EEG. IEEE Sens. J. 2022, 20, 21257–21265. [Google Scholar] [CrossRef]
- Niso, G.; Romero, E.; Moreau, J.T.; Araujo, A.; Krol, L.R. Wireless EEG: A survey of systems and studies. Neuroimage 2023, 269, 119774. [Google Scholar] [CrossRef]
- Satheesh, K.J.; Bhuvaneswari, P.T.V. Analysis of Electroencephalography (EEG) Signals and Its Categorization–A Study. Procedia Eng. 2012, 38, 2525–2536. [Google Scholar]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Introduction to EEG- and Speech-Based Emotion Recognition; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–50. [Google Scholar] [CrossRef]
- Gruzelier, J.; Inoue, A.; Smart, R.; Steed, A.; Steffert, T. Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 2010, 480, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pope, A.T.; Bogart, E.H.; Bartolome, D.S. Biocybernetic System Evaluates Indices of Operator Engagement in Automated Task. Biol. Psychol. 1995, 40, 187–195. [Google Scholar] [CrossRef] [PubMed]
- The Joanna Briggs Institute Critical Appraisal Tools for Use in JBI Systematic Reviews. Available online: https://jbi.global/critical-appraisal-tools (accessed on 25 March 2023).
- Wang, D.; Li, H.; Chen, J. Detecting and Measuring Construction Workers’ Vigilance through Hybrid Kinematic-EEG Signals. Autom. Constr. 2019, 100, 11–23. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Jin, H.; Huang, Y.; Liu, Z. The Psychoacoustics Annoyance Research Based on EEG Rhythms for Passengers in High-Speed Railway. Appl. Acoust. 2021, 171, 107575. [Google Scholar] [CrossRef]
- Cortese, M.D.; Vatrano, M.; Tonin, P.; Cerasa, A.; Riganello, F. Inhibitory Control and Brain-Heart Interaction: An HRV-EEG Study. Brain Sci. 2022, 12, 740. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, C.; He, F.; Zhao, X.; Qi, H.; Zhou, P.; Zhang, L.; Ming, D. How Physical Activities Affect Mental Fatigue Based on EEG Energy, Connectivity, and Complexity. Front. Neurol. 2018, 9, 915. [Google Scholar] [CrossRef]
- Zammouri, A.; Chraa-Mesbahi, S.; Ait Moussa, A.; Zerouali, S.; Sahnoun, M.; Tairi, H.; Mahraz, A.M. Brain Waves-Based Index for Workload Estimation and Mental Effort Engagement Recognition. J. Physycs Conf. Ser. 2017, 904, 012008. [Google Scholar] [CrossRef] [Green Version]
- Shaw, E.P.; Rietschel, J.C.; Hendershot, B.D.; Pruziner, A.L.; Miller, M.W.; Hatfield, B.D.; Gentili, R.J. Measurement of Attentional Reserve and Mental Effort for Cognitive Workload Assessment under Various Task Demands during Dual-Task Walking. Biol. Psychol. 2018, 134, 39–51. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, P.; Fu, W.; Ma, C. Research on Mental Fatigue Detection Based on Portable EEG Acquisition Equipment. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014. [Google Scholar]
- Mahajan, R.; Majmudar, C.A.; Khatun, S.; Morshed, B.I.; Bidelman, G.M. NeuroMonitor Ambulatory EEG Device: Comparative Analysis and Its Application for Cognitive Load Assessment. In Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014. [Google Scholar]
- Guo, X.; Zhu, T.; Wu, C.; Bao, Z.; Liu, Y. Emotional Activity Is Negatively Associated with Cognitive Load in Multimedia Learning: A Case Study with EEG Signals. Front. Psychol. 2022, 13, 889427. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, B.M.; Wang, J.; Truax, D. Assessment of Mental Fatigue Using Electroencephalography (EEG) and Virtual Reality (VR) for Construction Fall Hazard Prevention. Eng. Constr. Archit. Manag. 2022, 29, 3593–3616. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, C.; Yu, X. Evaluation of Mental Fatigue Based on Multipsychophysiological Parameters and Kernel Learning Algorithms. Sci. Bull. 2008, 53, 1835–1847. [Google Scholar] [CrossRef]
- Aliyari, H.; Hosseinian, S.H.; Menhaj, M.B.; Sahraei, H. Analysis of the Effects of High-Voltage Transmission Line on Human Stress and Attention Through Electroencephalography (EEG). Iran. J. Sci. Technol. Trans. Electr. 2019, 43, 211–218. [Google Scholar] [CrossRef]
- Dan, A.; Reiner, M. EEG-Based Cognitive Load of Processing Events in 3D Virtual Worlds Is Lower than Processing Events in 2D Displays. Int. J. Psychophysiol. 2017, 122, 75–84. [Google Scholar] [CrossRef]
- Wang, H.; Dragomir, A.; Abbasi, N.I.; Li, J.; Thakor, N.V.; Bezerianos, A. A Novel Real-Time Driving Fatigue Detection System Based on Wireless Dry EEG. Cogn. Neurodyn. 2018, 12, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, J.; Dasgupta, R. Neural Correlates of Action Video Game Experience in a Visuospatial Working Memory Task. Neural. Comput. Appl. 2020, 32, 3431–3440. [Google Scholar] [CrossRef]
- Nowak, K.; Costa-Faidella, J.; Dacewicz, A.; Escera, C.; Szelag, E. Altered Event-Related Potentials and Theta Oscillations Index Auditory Working Memory Deficits in Healthy Aging. Neurobiol. Aging 2021, 108, 1–15. [Google Scholar] [CrossRef]
- Lutsyuk, N.V.; Éismont, E.V.; Pavlenko, V.B. Modulation of Attention in Healthy Children Using a Course of EEG-Feedback Sessions. Neurophysiology 2006, 38, 389–395. [Google Scholar] [CrossRef]
- Rajendran, V.G.; Jayalalitha, S.; Adalarasu, K. EEG Based Evaluation of Examination Stress and Test Anxiety Among College Students. IRBM 2022, 43, 349–361. [Google Scholar] [CrossRef]
- Vernon, D.; Egner, T.; Cooper, N.; Compton, T.; Neilands, C.; Sheri, A.; Gruzelier, J. The Effect of Training Distinct Neurofeedback Protocols on Aspects of Cognitive Performance. Int. J. Psychophysiol. 2003, 47, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, K.; Lee, Y. Effect of Compression Pants on EEG Spectrum. Int. J. Cloth. Sci 2019, 32, 197–207. [Google Scholar] [CrossRef]
- Karran, A.J.; Demazure, T.; Leger, P.M.; Labonte-LeMoyne, E.; Senecal, S.; Fredette, M.; Babin, G. Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and FNIRS. Front. Hum. Neurosci. 2019, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Hirai, F.; Miyaji, I. Learning System Using Simple Electroencephalograph Feedback Effect During Memory Work. Procedia Comput. Sci. 2014, 35, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Zahari, Z.L.; Abdubrani, R. Optimal accuracy performance in music-based eeg signal using matthew correlation coefficient advanced (mcca). J. Teknol. 2021, 83, 53–61. [Google Scholar] [CrossRef]
- Mercier, J.; Whissell-Turner, K.; Paradis, A.; Avaca, I. Good Vibrations: Tuning a Systems Dynamics Model of Affect and Cognition in Learning to the Appropriate Frequency Bands of Fine-Grained Temporal Sequences of Data: Frequency Bands of Affect and Cognition. In Proceedings of the 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion, Online, 2–4 December 2020. [Google Scholar] [CrossRef]
- Gwak, J.; Cho, J.; Araki, K.; Sugimachi, T.; Kubo, N.; Suda, Y. Effects of Tilting Mechanism of Narrow Vehicle on Psychophysiological States of Driver. Int. J. Automot. Eng. 2020, 11, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, M.; Jraidi, I.; Lajoie, S.P.; Frasson, C. Enhancing the Learning Experience Using Real-Time Cognitive Evaluation. Int. J. Educ. Technol. 2019, 9, 678–688. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, D.; Menassa, C.; Kamat, V. Investigating the effect of indoor thermal environment on occupants’ mental workload and task performance using electroencephalogram. Build. Environ. 2019, 158, 120–132. [Google Scholar] [CrossRef]
- Bollock, N.; O’Brien, M.; Gai, Y.; Belt, S. Evidence-Based Training and Adaptive Control: Exploring the Cognitive and Neural Processes and the Interface between the Pilot and Flight Control Systems (Work in Progress). In Proceedings of the 2019 ASEE Annual Conference & Exposition Proceedings, Tampa, FL, USA, 16–19 June 2019. [Google Scholar] [CrossRef]
- Fahimi, F.; Goh, W.B.; Lee, T.S.; Guan, C. EEG predicts the attention level of elderly measured by RBANS. Int. J. Crowd Sci. 2018, 2, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Gu, J.; Jia, H.; Yao, Z.; Chang, R. The Relationship Between Drivers’ Cognitive Fatigue and Speed Variability During Monotonous Daytime Driving. Front. Psychol. 2018, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Mijović, P.; Milovanović, M.; Gligorijević, I.; Ković, V.; Živanović-Mačužić, I.; Mijović, B. Investigating Brain Dynamics in Industrial Environment—Integrating Mobile EEG and Kinect for Cognitive State Detection of a Worker. In Augmented Cognition. Neurocognition and Machine Learning, Proceedings of 11th International Conference, AC 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, 9–14 July 2017; Schmorrow, D., Fidopiastis, C., Eds.; Springer: Cham, Switzerland, 2017; Volume 10284, p. 10284. [Google Scholar] [CrossRef]
- bin Abdul Rashid, N.; Taib, M.N.; Lias, S.; Sulaiman, N.; Murat, Z.H.; Abdul Kadir, R.S.S. Determination of Vigilance-Bound Learning Style Based on EEG. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012. [Google Scholar] [CrossRef]
- Punsawad, Y.; Aempedchr, S.; Wongsawat, Y.; Parnichkun, M. EEG-Based Mental Fatigue Alarm System Using Weighted-Frequency Index. In Proceedings of the 2nd Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2010, Singapore, 14–17 December 2010; pp. 193–196. [Google Scholar]
- Babiker, A.; Faye, I.; Malik, A. A Physiological Index for Situational Interest in Classroom Settings Using EEG (Preliminary Result). In Proceedings of the TENCON 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017. [Google Scholar] [CrossRef]
- Wu, E.Q.; Peng, Z.; Lin, S.F. Pilots’ Fatigue Status Recognition Using Deep Contractive Autoencoder Transactions on Instrumentation and Measurement. IEEE Trans. Instrum. Meas. 2019, 68, 3907–3919. [Google Scholar] [CrossRef]
- Aliyari, H.; Sahraei, H.; Golabi, S.; Kazemi, M.; Daliri, M.R.; Minaei-Bidgoli, B. The Effect of Brain Teaser Games on the Attention of Players Based on Hormonal and Brain Signals Changes. Basic. Clin. Neurosci. 2021, 12, 587–596. [Google Scholar] [CrossRef]
- Al-Nafjan, A.; Hosny, M.; Al-Wabil, A.; Al-Ohali, Y. Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Jebelli, H.; Mahdi Khalili, M.; Lee, S. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL). IEEE J. Biomed. Health Inform. 2004, 23, 1928–1939. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Malik, A.S.; Subhani, A.R. A Physiological Signal-Based Method for Early Mental-Stress Detection. Biomed Signal Process Control 2018, 46, 18–32. [Google Scholar] [CrossRef]
- Freeman, F.G.; Mikulka, P.G.; Scerbo, M.W.; Scott, L. An Evaluation of an Adaptive Automation System Using a Cognitive Vigilance Task. Biol. Psychol. 2004, 67, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Hyldig, T.; Bidstrup, F.; González-Alonso, J.; Christoffersen, G.R.J. Brain Activity and Fatigue during Prolonged Exercise in the Heat. Pflügers Arch. 2001, 442, 41–48. [Google Scholar] [CrossRef]
- Aliyari, H.; Sahraei, H.; Erfani, M.; Mohammadi, M.; Kazemi, M.; Daliri, M.R.; Minaei-Bidgoli, B.; Agaei, H.; Sahraei, M.; Seyed Hosseini, S.M.A.; et al. Changes in Cognitive Functions Following Violent and Football Video Games in Young Male Volunteers by Studying Brain Waves. Basic Clin. Neurosci. 2020, 11, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagendra, H.; Kumar, V.; Mukherjee, S. Cognitive Behavior Evaluation Based on Physiological Parameters among Young Healthy Subjects with Yoga as Intervention. Comput. Math. Methods Med. 2015, 2015, 821061. [Google Scholar] [CrossRef]
- Ramirez, R.; Vamvakousis, Z. Detecting Emotion from EEG signals using the Emotive EPOC device. In International Conference on Brain Informatics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 175–184. [Google Scholar] [CrossRef]
- Angelidis, A.; Hagenaars, M.; van Son, D.; van der Does, W.; Putman, P. Do Not Look Away! Spontaneous Frontal EEG Theta/Beta Ratio as a Marker for Cognitive Control over Attention to Mild and High Threat. Biol. Psychol. 2018, 135, 8–17. [Google Scholar] [CrossRef]
- Simon, M.; Schmidt, E.A.; Kincses, W.E.; Fritzsche, M.; Bruns, A.; Aufmuth, C.; Bogdan, M.; Rosenstiel, W.; Schrauf, M. EEG Alpha Spindle Measures as Indicators of Driver Fatigue under Real Traffic Conditions. Clin. Neurophysiol. 2011, 122, 1168–1178. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Bermudez, B.S.; Liarokapis, F. EEG correlates of video game experience and user profile in motor-imagery-based brain–computer interaction. Vis. Comput. 2017, 33, 533–546. [Google Scholar] [CrossRef]
- Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transp. Res. Part F Traffic Psychol. Behav. 2010, 13, 297–306. [Google Scholar] [CrossRef]
- Putman, P.; Verkuil, B.; Arias-Garcia, E.; Pantazi, I.; Van Schie, C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn. Affect. Behav. Neurosci. 2014, 2, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, K.; Wu, Q.; Wang, H.; Qian, Z.; Sudlow, G. EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays 2013, 34, 81–88. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Tanaka, M.; Shigihara, Y.; Ishii, A. Effect of mental fatigue on the central nervous system: An electroencephalography study. Behav. Brain Funct. 2012, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Kim, M.; Chun, C. Effect of temperature on attention ability based on electroencephalogram measurements. Build. Environ. 2019, 147, 299–304. [Google Scholar] [CrossRef]
- Wen, T.Y.; Bani, N.A.; Muhammad-Sukki, F.; Mohd-Aris, S.A. Electroencephalogram (EEG) human stress level classification based on theta/beta ratio. Int. J. Integr. Eng. 2020, 12, 174–180. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, Q.; Liu, Z.; Xie, F. Electroencephalogram assessment of mental fatigue in visual search. Biomed. Mater. Eng. 2015, 26, S1455–S1463. [Google Scholar] [CrossRef] [Green Version]
- Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M.; Müller, K.M. Estimating brain load from the EEG. Sci. World J. 2009, 9, 639–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Yu, X. Estimating mental fatigue based on electroencephalogram and heart rate variability. Pol. J. Med. Phys. Eng. 2011, 16, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Freeman, F.G.; Mikulka, P.J.; Prinzel, L.J.; Scerbo, M.W. Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol. Psychol. 1999, 50, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Cui, X.; Gao, Z.; Gu, Z. Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting. Front. Hum. Neurosci. 2021, 15, 673955. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zhong, B.; Luo, H.; Rose, T.; Li, J.; Antwi-Afari, M.F. Effects of physical fatigue on the induction of mental fatigue of construction workers: A pilot study based on a neurophysiological approach. Autom. Constr. 2020, 120, 103381. [Google Scholar] [CrossRef]
- Eoh, H.J.; Chung, M.K.; Kim, S.H. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int. J. Ind. Ergon. 2005, 35, 307–320. [Google Scholar] [CrossRef]
- Freeman, F.G.; Mikulka, P.J.; Scerbo, M.W.; Prinzel, L.J.; Clouatre, K. Evaluation of a psychophysiologically controlled adaptive automation system, using performance on a tracking task. Appl. Psychophysiol. Biofeedback 2000, 25, 103–115. [Google Scholar] [CrossRef]
- Li, W.; He, Q.-C.; Fan, X.-M.; Fei, Z.-M. Evaluation of driver fatigue on two channels of EEG data. Neurosci. Lett. 2012, 506, 235–239. [Google Scholar] [CrossRef]
- He, Q.; Li, W.; Fan, X.; Fei, Z. Evaluation of driver fatigue with multi-indicators based on artificial neural network. Intell. Transp. Syst. 2016, 10, 555–561. [Google Scholar] [CrossRef]
- Huang, J.; Yu, C.; Wang, Y.; Zhao, Y.; Liu, S.; Mo, C.; Liu, J.; Zhang, L.; Shi, Y. FOCUS: Enhancing children’s engagement in reading by using contextual BCI training sessions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14), New York, NY, USA, 26 April 2014. [Google Scholar] [CrossRef]
- Andujar, M.; Gilbert, J.E. Let’s learn!: Enhancing user’s engagement levels through passive brain-computer interfaces. In Proceedings of the CHI ’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013. [Google Scholar]
- Hwang, S.; Jebelli, H.; Choi, B.; Choi, M.C.; Lee, S. Measuring Workers’ Emotional State during Construction Tasks Using Wearable EEG. J. Constr. Eng. Manag. 2018, 144, 04018050. [Google Scholar] [CrossRef]
- Szafir, D.; Mutlu, B. Pay attention! Designing adaptive agents that monitor and improve user engagement. In Proceedings of the CHI ’12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TE, USA, 5–10 May 2012. [Google Scholar] [CrossRef]
- Liu, N.H.; Chiang, C.Y.; Chu, H.C. Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef]
- Chen, J.R.; Song, X.; Xiaowei, L. Revealing the ’Invisible Gorilla’ in Construction: Assessing Mental Workload through Time-Frequency Analysis. In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction, Oulu, Finland, 15–18 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Khedher, A.; Jraidi, I.; Frasson, C. Tracking Students’ Mental Engagement Using EEG Signals during an Interaction with a Virtual Learning Environment. J. Intell. Learn. Syst. Appl. 2019, 11, 111001. [Google Scholar] [CrossRef] [Green Version]
- Jap, B.T.; Lal, S.; Fischer, P.; Bekiaris, E. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 2009, 36, 2352–2359. [Google Scholar] [CrossRef]
- Morillas-Romero, A.; Tortella-Feliu, M.; Bornas, X.; Putman, P. Spontaneous EEG theta/beta ratio and delta-beta coupling in relation to attentional network functioning and self-reported attentional control. Cogn. Affect. Behav. Neurosci. 2015, 15, 598–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagannath, M.; Venkatesh, B. Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Appl. Ergon. 2014, 45, 1140–1147. [Google Scholar] [CrossRef]
- Egner, T.; Strawson, E.; Gruzelier, J.H. EEG signature and phenomenology of alpha/theta neurofeedback training versus mock feedback. Appl. Psychophysiol. Biofeedback 2002, 4, 261–270. [Google Scholar] [CrossRef]
- Lei, C.; Jie, L.; Yaoru, S.; Huaping, Z.; Chungang, Y. EEG-based vigilance analysis by using fisher score and PCA algorithm. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 10–12 December 2010. [Google Scholar] [CrossRef]
- Giraldo, S.; Ramirez, R. Brain-Activity-Driven Real-Time Music Emotive Control. In Proceedings of the 3rd International Conference on Music & Emotion (ICME3), Jyväskylä, Finland, 11–15 June 2013. [Google Scholar] [CrossRef]
- Shim, B.-S.; Lee, S.W.; Shin, J.-H. Implementation of a 3-Dimensional Game for developing balanced Brainwave. In Proceedings of the 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007), Busan, Korea, 20–22 August 2007. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Guo, X.; Lin, X.; Wu, C.; Zhu, T. Impacts of Color Coding on Programming Learning in Multimedia Learning: Moving Toward a Multimodal Methodology. Front. Psychol. 2021, 12, 773328. [Google Scholar] [CrossRef]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef]
- Glassman, R.B. Hypothesized neural dynamics of working memory: Several chunks might be marked simultaneously by harmonic frequencies within an octave band of brain waves. Brain Res. Bull. 1999, 50, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Bazanova, O.M.; Vernon, D. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 2014, 44, 94–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Egan, T.D.; Johnson, K.B. Raw and processed electroencephalography in modern anesthesia practice: A brief primer on select clinical applications. Korean J. Anesthesiol. 2021, 74, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Eveson, L.; Vizcaychipi, M.; Patil, S. Role of bispectral index monitoring and burst suppression in prognostication following out-of-hospital cardiac arrest: A systematic review protocol. Syst. Rev. 2017, 6, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junghöfer, M.; Peyk, P.; Flaisch, T.; Schupp, H.T. Neuroimaging methods in affective neuroscience: Selected methodological issues. Prog. Brain Res. 2006, 156, 123–143. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Barba, R.; Sion, A.; Martínez-Maldonado, A.; Domínguez-Centeno, I.; Prieto-Montalvo, J.; Navarrete, F.; García-Gutierrez, M.S.; Manzanares, J.; Rubio, G. Neuropsychophysiological Measures of Alcohol Dependence: Can We Use EEG in the Clinical Assessment? Front. Psychiatry 2020, 11, 676. [Google Scholar] [CrossRef]
- Anokhin, A.P. Genetic psychophysiology: Advances, problems, and future directions. Int. J. Psychophysiol. 2014, 93, 173–197. [Google Scholar] [CrossRef] [Green Version]
- Chin, F.; Chou, R.; Waqas, M.; Vakharia, K.; Rai, H.; Levy, E.; Holmes, D. Efficacy of prayer in inducing immediate physiological changes: A systematic analysis of objective experiments. J. Complement. Integr. Med. 2021, 18, 679–684. [Google Scholar] [CrossRef]
- Viirre, E.S. Quantitative electroencephalography for tinnitus—A means for data collection, analysis, and translation. Int. Tinnitus J. 2009, 15, 149–153. [Google Scholar]
- de Souza, L.C.; Guimarães, H.C.; Teixeira, A.L.; Caramelli, P.; Levy, R.; Dubois, B.; Volle, E. Frontal lobe neurology and the creative mind. Front. Psychol. 2014, 5, 761. [Google Scholar] [CrossRef] [Green Version]
Ref. | QA 1 | Pop. Size 2 | Gender (M/F) 3 | Age (Years) 4 | Preferred Hand 5 | ||
---|---|---|---|---|---|---|---|
[2] | 75% | 9 | 8/1 | 24 ± 2.9 [18–28] | R: 9 L: 0 | ||
[5] | 88% | 30 | 10/20 | AVG: 20.87 [18–43] | R:30 L:0 | ||
[16] | 50% | 6 | NA | AVG: 35.5 [25–50] | NA | ||
[18] | 50% | 10 | 10/0 | NA | R: 10 L: 0 | ||
[19] | 75% | 30 | 16/14 | [8–70] | NA | ||
[20] | 80% | 14 | 6/8 | M: 43.8 ± 9.2 F: 34.7 ± 11.9 | R: 14 L: 0 | ||
[21] | 50% | 14 | 5/9 | 22.4 ± 1.6 | NA | ||
[22] | 38% | 4 | 4/0 | [23–33] | R: 4 L: 0 | ||
[23] | 50% | 12 | 11/1 | [21–35] | NA | ||
[24] | 25% | 4 | NA | [24–26] | NA | ||
[25] | 50% | 4 | NA | NA | NA | ||
[26] | 100% | 42 | 31/11 | 20.81 ± 1.13 | NA | ||
[27] | 80% | 10 | 10/0 | 22.4 ± 1.7 | NA | ||
[28] | 100% | 16 | 16/0 | 23.1 ± 1.8 | R: 16 L: 0 | ||
[29] | 30% | 20 | 20/0 | AVG: 27 | R: 20 L: 0 | ||
[30] | 80% | 17 | 11/6 | AVG: 32.22; SE: 2.2 [21–40] | NA | ||
[31] | 88% | 10 | 7/3 | 20.6 ± 3.2 | R: 10 L: 0 | ||
[32] | 40% | 35 | 35/0 | 20.9 ± 1.57 | R: 35 L: 0 | ||
[33] | 75% | 57 | (28 YA) | 18/39 | 12/16 | 25.39 ± 3.03 [21–31] | R: 57 L:0 |
(29 O) | 6/23 | 70.17 ± 3.38 [65–78] | |||||
[34] | 50% | 29 | 17/12 | [10–13] | NA | ||
[35] | 63% | 14 | 8/6 | 20 ±1.5 [17–21] | NA | ||
[36] | 69% | 30 | 18/12 | 22.1 ± 1.77 [20–28] | NA | ||
[37] | 75% | 11 | NA | 24 ± 2.2 | NA | ||
[38] | 38% | 30 | 19/11 | AVG: 24 [18–43] | NA | ||
[39] | 38% | 2 | 2/0 | [20–29] | NA | ||
[40] | 50% | 34 | 17/17 | [19–30] | NA | ||
[41] | 38% | 82 | 35/47 | AVG: 26 | NA | ||
[42] | 88% | 8 | 8/0 | 36.6 ± 9.2 | R: 8 L:0 | ||
[43] | 38% | 14 | NA | NA | NA | ||
[44] | 38% | 15 | NA | [22–33] | NA | ||
[45] | 38% | 5 | NA | NA | NA | ||
[46] | 63% | 105 | NA | [60–80] | NA | ||
[47] | 63% | 21 | 21/0 | AVG: 40.1 [29–47] | NA | ||
[48] | 50% | 6 | NA | NA | NA | ||
[49] | 38% | 41 | NA | NA | NA | ||
[50] | 38% | 2 | NA | NA | NA | ||
[51] | 50% | 19 | 17/2 | NA | NA | ||
[52] | 50% | 40 | 40/0 | 39.06 ± 7.75 | NA | ||
[53] | 75% | 45 | 45/0 | AVG: 20 | NA | ||
[54] | 50% | 32 | 16/16 | AVG: 26.9 [19–37] | NA | ||
[55] | 88% | 39 | 32 (dataset of 54) | NA | 16/16 | AVG: 26.9 [19–37] | NA |
7 | NA | 37.9 ± 8.8 | NA | ||||
[56] | 100% | 22 | 22/0 | 22.54 ± 1.53 | NA | ||
[57] | 38% | 44 | NA | ≥18 | NA | ||
[58] | 88% | 7 | 7/0 | 26.3 ± 1.9 | NA | ||
[59] | 50% | 64 | 64/0 | [20–25] | NA | ||
[60] | 77% | 30 | 15 | 27/3 | 13/2 | 22.42 ± 2.30 | R:30 L:0 |
15 | 14/1 | 23.67 ± 2.09 | |||||
[61] | 63% | 6 | 3/3 | AVG: 30.16 | NA | ||
[62] | 63% | 74 | 36/38 | NA | NA | ||
[63] | 75% | 10 | 6/4 | AVG: 27.5 [24–36] | NA | ||
[64] | 88% | 20 | 16/4 | 28 ± 2 | NA | ||
[65] | 63% | 21 | 21/0 | [25–35] | NA | ||
[66] | 54% | 77 | 30/ 47 | 19.6 ± 2.5 | NA | ||
[67] | 88% | 10 | NA | AVG: 22 [20–24] | NA | ||
[68] | 88% | 11 | 11/0 | 37.9 ± 8.8 [26–50] | NA | ||
[69] | 69% | 18 | 18/0 | 30.1 ± 10.8 | NA | ||
[70] | 75% | 7 | 7/0 | [22–28] | NA | ||
[71] | 75% | 40 | 26/14 | [19–38] | NA | ||
[72] | 75% | 10 | 10/0 | [20–28] | NA | ||
[73] | 75% | 36 | 20 | NA | 20/0 | [19–22] | NA |
16 | NA | NA | NA | ||||
[74] | 100% | 18 | 16/0 | 23.1 ± 1.4 [21–26] | R:18 L:0 | ||
[75] | 38% | 36 | NA | [8–40] | R:36 L:0 | ||
[76] | 88% | 42 | 16/26 | 24.26 ± 1.17 [20–26] | R:42 L:0 | ||
[77] | 100% | 9 | NA | [25–40] | NA | ||
[78] | 88% | NA | NA | AVG: 26 | NA | ||
[79] | 54% | 60 | NA | [18–40] | R:60 L:0 | ||
[80] | 75% | 20 | 20/0 | 25.6 ± 2.56 [22–32] | NA | ||
[81] | 100% | 50 | NA | 28.48 ± 2.63 [25–33] | NA | ||
[82] | 75% | 24 | 10/14 | 7.56 ± 0.86 [6–8.5] | NA | ||
[83] | 38% | NA | NA | NA | NA | ||
[84] | 88% | 10 | 10/0 | [26–55] | NA | ||
[85] | 63% | 30 | 15/15 | 22.3 ± 6.88 [18–57] | NA | ||
[86] | 88% | 24 | 12/12 | AVG: 25 [22–27] | NA | ||
[87] | 63% | 5 | NA | NA | NA | ||
[88] | 63% | 15 | 8/7 | 21.8 ± 2.73 [20–27] | NA | ||
[89] | 100% | 52 | 36/16 | 28 ± 10 [20–70] | NA | ||
[90] | 88% | 110 | 27/83 | 29.34 ± 10.17 [18–55] | NA | ||
[91] | 88% | 20 | 20/0 | 23 ± 4.40 | NA | ||
[92] | 69% | 18 | 12/6 | 23.1 ± 1.9 | NA | ||
[93] | 50% | 13 | 13/0 | [21–30] | NA | ||
[94] | 50% | NA | NA | NA | NA | ||
[95] | 50% | 10 | 5/5 | NA | NA | ||
[96] | 46% | 42 | 26/16 | 20.81 ± 1.13 | NA |
Ref. | Device | NAC 1 | CPA 2 | EMS 3 | CSF 4 |
---|---|---|---|---|---|
[2] | NeuroScan | 19 | F4, F3, F7, F8, Pz, P3, Fz, C3, Pz, P3, P4, Cz, FP1 | 10–20 | |
[5] | Emotiv EPOC system | 14 | F3, F4, I2 | 10–20 | |
[16] | NA | 7 | Cz, Pz, P3, P4 | 10–20 | ✓ |
[18] | Emotiv EPOC system | 14 | NA | 10–20 | |
[19] | BIOPAC (EEG100C) | 1 | NA | NA | ✓ |
[20] | NEXUS-32 | 21 | F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, O2 | 10–20 | |
[21] | NeuroScan | 20 | FP1, FP2, F7, F8, F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2, Oz | 10–20 | ✓ |
[22] | EBNeuro | 7 | P4, F4 | E 10–20 | ✓ |
[23] | MOVE system | 64 | NA | E 10–20 | |
[24] | NeuroSky’s Mind-Band | 1 | FP1 | 10–20 | |
[25] | NeuroScan | 2 | FP1, FP2 | 10–20 | ✓ |
[26] | Device of OpenBCI | 15 | FP1, FP2, F7, F3, Fz, F4, F8, T7, Cz, T8, P7, Pz, P8, O1, O2 | 10–20 | ✓ |
[27] | Device of mBrainTrain | 24 | FP1, FP2, AFz, F7, F3, Fz, F4, F8, T7, T8, C3, C4, Cz, CPz, M1, M2, P7, P3, Pz, P4, P8, POz, O1, O2 | 10–20 | ✓ |
[28] | NeuroScan | 13 | Fp2, Fp1, F4, F3, A2, A1, C4, C3, P4, P3, Fz, Cz, Pz | 10–20 | ✓ |
[29] | Emotiv EPOC system | 14 | AF3, AF4 | 10–20 | ✓ |
[30] | Mitsar-EEG 201 | 20 | Fz, Pz | 10–20 | ✓ |
[31] | NA | 22 | NA | E 10–20 | ✓ |
[32] | MOBITA (wireless EEG) | 27 | Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2 | 10–20 | ✓ |
[33] | BrainVision Recorder | 32 | NA | 10–20 | |
[34] | NA | 16 | FP1, FP2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6, P3, P4, O1, O2 | 10–20 | |
[35] | Enobio | 8 | FP1, FP2, P3, P4, O1, C4, T7, T8 | 10–20 | ✓ |
[36] | NA | NA | NA | NA | |
[37] | BIOS-S8 | 6 | Fpz, Fz, Cz, Pz, C3, C4 | 10–20 | ✓ |
[38] | BrainVision | 4 | F3, F4, O1, O2 | 10–20 | |
[39] | MindSet | 1 | FP1 | 10–20 | |
[40] | Emotiv EPOC system | 14 | AF3, F7, F3, FC5, T7, AF4, F4, F8, FC6, T8 | 10–20 | |
[41] | NA | 64 | Fz, Pz, F3, F4, O1, O2 | E 10–20 | |
[42] | Biosignalplux (EEG) | 2 | F3, F4 | 10–20 | ✓ |
[43] | Emotiv EPOC system | 14 | O1, O2, P7, P8, T7, T8, FC5, FC6, F3, F4, F7, F8, AF3, AF4 | 10–20 | ✓ |
[44] | Emotiv EPOC system | 14 | F3, F4, P7, P8 | 10–20 | ✓ |
[45] | Emotiv EPOC system | 14 | O1, O2, P7, P8, T7, T8, FC5, FC6, F3, F4, F7, F8, AF3, AF4 | 10–20 | |
[46] | NA | 1 | NA | NA | |
[47] | eegoTMmylab | 63 | C1, C2, CP1, CP2, P1, P2 | E 10–20 | |
[48] | mBrainTrain (SMARTING system) | NA | Fz, Cz, CPz, Pz | NA | |
[49] | Wave Rider system | 2 | FP1, FP2 | 10–20 | |
[50] | BIOPAC (MP100) | 2 | NA | 10–20 | |
[51] | Enobio device | 8 | Fp1, Fp2, F3, F4, T7, T8, Pz, P4 | 10–20 | ✓ |
[52] | NA | 64 | FP1 | 10–20 | |
[53] | Emotiv EPOC system | 14 | AF3, AF4 | 10–20 | ✓ |
[54] | Emotiv EPOC system | 14 | Fz, AF3, F3, AF4, F4 | 10–20 | ✓ |
[55] | Emotiv EPOC system | 14 | AF3, AF4, F3, F4 | 10–20 | ✓ |
[56] | Net Amps 300 | 128 | FP1, FP2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6, P3, P4, O1, O2, Fz, Cz, Pz | 10–20 | ✓ |
[57] | BIOPAC (EEG100A) | 22 | O3, O4, F3, F4 | 10–20 | |
[58] | NA | 2 | F3, F4 | 10–20 | |
[59] | Emotiv EPOC system | 14 | AF3, AF4, F3, F4 | 10–20 | ✓ |
[60] | BIOPAC (MP150) | 20 | NA | 10–20 | |
[61] | Emotiv EPOC system | 14 | F3, F4 | 10–20 | ✓ |
[62] | BioSemi ActiveTwo | 9 | F3, Fz, F4 | 10–20 | ✓ |
[63] | BrainAmp | 64 | F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC4, C3, C1, C2, C4, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4, PO3, POz, PO4, O1, Oz, O2 | E 10–20 | |
[64] | g.MOBIlab (EEG) | 8 | FC3, FC4, C3, C4, C5, C6, CP3, CP4 | 10–20 | ✓ |
[65] | NA | 13 | Fp1, Fp2, F3, F4, T3, T4, C3, C4, P3, P4, O1, O2, Cz | 10–20 | |
[66] | BioSemi ActiveTwo | 9 | F3, Fz, F4 | 10–20 | ✓ |
[67] | VEEG1240 | 16 | NA | 10–20 | |
[68] | Emotiv EPOC system | 14 | AF3, AF4, F3, F4 | 10–20 | ✓ |
[69] | Neurofax μ EEG-9100 | 11 | NA | NA | ✓ |
[70] | BIOPAC (MP150) | 8 | NA | 10–20 | |
[71] | g-MOBIlab (EEG) | 3 | NA | 10–20 | |
[72] | NeuroScan | 19 | NA | 10–20 | |
[73] | NA | 3 | Fz, Pz | 10–20 | ✓ |
[74] | NeuroScan | 13 | Fp1, Fp2, F3, F4, Fz, C3, C4, Cz, P3, P4, Pz | 10–20 | ✓ |
[75] | BIOPAC (EEG100A) | 4 | Cz, Pz, P3, P4 | 10–20 | ✓ |
[76] | NeuroScan | 32 | NA | E 10–20 | |
[77] | Emotiv EPOC system | 14 | NA | 10–20 | |
[78] | BIOPAC (LXE1008C) | 8 | NA | 10–20 | |
[79] | BIOPAC (EEG100A) | 12 | Cz, Pz, P3, P4, F3, F4, F7, F8, T3, T4, T5, T6 | 10–20 | |
[80] | NicoletOne Ambulatory EEG | 16 | NA | 10–20 | |
[81] | NicoletOne Ambulatory EEG | 16 | NA | 10–20 | |
[82] | Emotiv EPOC system | 14 | NA | 10–20 | |
[83] | Emotiv EPOC system | 14 | NA | 10–20 | |
[84] | Emotiv EPOC system | 14 | F3, F4 AF3, AF4, F3, F4 | 10–20 | ✓ |
[85] | Mindset | 1 | Fp1 | 10–20 | |
[86] | Mindset | 1 | Fp1 | 10–20 | |
[87] | Neurosky TGAM | 4 | Fp1, Fp2, TP9, TP10 | 10–20 | ✓ |
[88] | Emotiv EPOC system | 14 | O1, O2, P7, P8, T7, T8, FC5, FC6, F3, F4, F7, F8, AF3, AF4 | 10–20 | ✓ |
[89] | NeuroScan | 30 | NA | 10–20 | |
[90] | BrainVision | 10 | F3, F4, P3, P4 | 10–20 | ✓ |
[91] | Mitsar-EEG-201 | 8 | F3, F4, P3, P4, T3, T4, O1, O2 | 10–20 | |
[92] | ProComp EEG System | 1 | Pz | NA | |
[93] | NeuroScan | 62 | NA | 10–20 | |
[94] | Emotiv EPOC system | 14 | O1, O2, P7, P8, T7, T8, FC5, FC6, F3, F4, F7, F8, AF3, AF4 | 10–20 | |
[95] | QEEG-4 system | 4 | NA | NA | |
[96] | NA | 15 | NA | 10–20 |
Index | Formula | Documents in Which the Index is Considered | ||
---|---|---|---|---|
Mental Strain | Sensory and Emotional Aspects | Movement | ||
I1 | 2, 5, 16, 18, 24, 27, 28, 35, 32, 46, 49, 52, 55, 56, 59, 67, 68, 71, 72, 74, 75, 76, 78, 86, 93 | 19, 42, 51, 54, 61, 84, 94 | 21, 58 | |
I2 | 5, 16, 18, 24, 27, 28, 31, 32, 35, 38, 41, 45, 47, 48, 49, 50, 52, 57, 63, 64, 67, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89, 91, 93, 96 | 19, 26, 43 | 60 | |
I3 | 18, 24, 27, 28, 29, 31, 34, 35, 46, 52, 53, 56, 62, 67, 69, 71, 72, 76, 79, 80, 89, 90, 93 | 19 | 60 | |
I4 | 18, 22, 24, 27, 30, 35, 36, 41, 44, 56, 69, 73, 74, 78, 80, 92 | 20, 23, 60 | ||
I5 | 33, 36, 56 | |||
I6 | 34, 36, 37 | |||
I7 | 36 | |||
I8 | 65 | |||
I9 | 18, 24, 52, 67, 72, 80, 89, 93 | 19 | ||
I10 | 24, 46, 80 | |||
I11 | 39 | |||
I12 | 25 | |||
I13 | 24 | |||
I14 | 24 | |||
I15 | 60 | |||
I16 | 18 | 40 | 60 | |
I17 | 56 | |||
I18 | 18, 56 | 19 | ||
I19 | 46 | |||
I20 | 46 | |||
I21 | 70, 95 | |||
I22 | 18 | 19 | ||
I23 | 18 | 19 | ||
I24 | 18 | 19 | ||
I25 | 18 | 19 | ||
I26 | 18 | |||
I27 | 18 | |||
I28 | 18 | |||
I29 | 18 | |||
I30 | 18 | |||
I31 | 18 | |||
I32 | 18 | |||
I33 | 18 | |||
I34 | 18 | |||
I35 | 18 | |||
I36 | 18 | |||
I37 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcantoni, I.; Assogna, R.; Del Borrello, G.; Di Stefano, M.; Morano, M.; Romagnoli, S.; Leoni, C.; Bruschi, G.; Sbrollini, A.; Morettini, M.; et al. Ratio Indexes Based on Spectral Electroencephalographic Brainwaves for Assessment of Mental Involvement: A Systematic Review. Sensors 2023, 23, 5968. https://doi.org/10.3390/s23135968
Marcantoni I, Assogna R, Del Borrello G, Di Stefano M, Morano M, Romagnoli S, Leoni C, Bruschi G, Sbrollini A, Morettini M, et al. Ratio Indexes Based on Spectral Electroencephalographic Brainwaves for Assessment of Mental Involvement: A Systematic Review. Sensors. 2023; 23(13):5968. https://doi.org/10.3390/s23135968
Chicago/Turabian StyleMarcantoni, Ilaria, Raffaella Assogna, Giulia Del Borrello, Marina Di Stefano, Martina Morano, Sofia Romagnoli, Chiara Leoni, Giulia Bruschi, Agnese Sbrollini, Micaela Morettini, and et al. 2023. "Ratio Indexes Based on Spectral Electroencephalographic Brainwaves for Assessment of Mental Involvement: A Systematic Review" Sensors 23, no. 13: 5968. https://doi.org/10.3390/s23135968