Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening?
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. National Lung Screening Trial
2.1.2. CT Scans
2.1.3. Clinical Features
2.1.4. Summary
2.2. Methodology
2.2.1. Single-Modality Aproaches
2.2.2. Multimodality Approaches
3. Results and Discussion
Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Pereira, T.; Neves, I.; Morgado, J.; Freitas, C.; Malafaia, M.; Sousa, J.; Fonseca, J.; Negrão, E.; Flor de Lima, B.; et al. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J. Pers. Med. 2022, 12, 480. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Srkalovic, G. Lung Cancer: Preventable Disease. Acta Medica Acad. 2018, 47, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, Z.; Gong, L.; Jiang, S.; Wang, L.; Zhang, H. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations. La Radiol. Medica 2020, 125, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Bi, X.; Ling, S.H. Multi-Level Cross Residual Network for Lung Nodule Classification. Sensors 2020, 20, 2837. [Google Scholar] [CrossRef] [PubMed]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, J.L.L.; de Amorim, L.B.V.; de Lima, L.L.; Filho, A.F.L.; Júnior, J.R.F.; de Oliveira, M.C. The Effects of Perinodular Features on Solid Lung Nodule Classification. J. Digit. Imaging 2021, 34, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabi, M.; Shak, K.; Tan, M. 3D axial-attention for lung nodule classification. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Kailasam, S.P.; Sathik, M.M. A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules. Asian Pac. J. Cancer Prev. 2019, 20, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, F.; Tie, Y.; Qi, L.; Wang, F. Res-trans networks for lung nodule classification. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Uthoff, J.M.; Mott, S.L.; Larson, J.; Neslund-Dudas, C.M.; Schwartz, A.G.; Sieren, J.C.; Investigators, C. Computed Tomography Features of Lung Structure Have Utility for Differentiating Malignant and Benign Pulmonary Nodules. Chronic Obstr. Pulm. Dis. J. COPD Found. 2022, 9, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Regan, E.A.; Hokanson, J.E.; Murphy, J.R.; Make, B.; Lynch, D.A.; Beaty, T.H.; Curran-Everett, D.; Silverman, E.K.; Crapo, J.D. Genetic Epidemiology of COPD (COPDGene) Study Design. COPD J. Chronic Obstr. Pulm. Dis. 2011, 7, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.G.; Lusk, C.M.; Wenzlaff, A.S.; Watza, D.; Pandolfi, S.; Mantha, L.; Cote, M.L.; Soubani, A.O.; Walworth, G.; Wozniak, A.; et al. Risk of Lung Cancer Associated with COPD Phenotype Based on Quantitative Image Analysis. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Team; Aberle, D.R.; Berg, C.D.; Black, W.C.; Church, T.R.; Fagerstrom, R.M.; Galen, B.; Gareen, I.F.; Gatsonis, C.; Goldin, J.; et al. The National Lung Screening Trial: Overview and Study Design. Radiology 2011, 258, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Liu, J.y.; Jiang, Y.j.; Sun, X.w.; Zheng, B.; Nie, S.d. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study. Med. Phys. 2018, 45, 5472–5481. [Google Scholar] [CrossRef] [PubMed]
- Stahlschmidt, S.R.; Ulfenborg, B.; Synnergren, J. Multimodal deep learning for biomedical data fusion: A review. Briefings Bioinform. 2022, 23, bbab569. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Bayoudh, K.; Knani, R.; Hamdaoui, F.; Mtibaa, A. A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets. Vis. Comput. 2022, 38, 2939–2970. [Google Scholar] [CrossRef] [PubMed]
Data Modality | Class | Task | |
---|---|---|---|
# Benign | # Malignant | ||
CT Scans | 522 | 339 | Train |
133 | 85 | Test | |
Clinical Features | 463 | 337 | Train |
121 | 84 | Test |
Hyper-Parameter | Value |
---|---|
Optimizer | Adam, SGD |
Learning rate | 0.01, 0.001, 0.0001 |
Weight Decay | 0.01, 0.001, 0.0001 |
Batch size | 16, 32, 64 |
Dropout | 0.3, 0.4, 0.5, 0.6 |
Hyper-Parameter | Value |
---|---|
# Estimators | 200, 300, 400, 500, 600 |
Criterion | gini, entropy |
Max features | sqrt, log2 |
Maximum depth | 3–9 |
Class weight | None, balanced |
Approach | # Clinical Features | AUC | |
---|---|---|---|
Single-Modality | Image Model | - | 0.7897 |
Clinical Model | 136 | 0.5241 | |
HIF | 42 | 0.7934 | |
Multimodality | FIF | 42 | 0.8021 |
LF | 136 | 0.7911 |
Approach | Optimizer | Learning | Weight | Batch | Dropout | |
---|---|---|---|---|---|---|
Rate | Decay | Size | ||||
Single Modality | Image Model | SGD | 0.0001 | 0.001 | 32 | 0.4 |
Multimodality | HIF | Adam | 0.01 | 0 | 16 | 0.4 |
FIF | Adam | 0.0001 | 0 | 64 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, J.V.; Matos, P.; Silva, F.; Freitas, P.; Oliveira, H.P.; Pereira, T. Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening? Sensors 2023, 23, 5597. https://doi.org/10.3390/s23125597
Sousa JV, Matos P, Silva F, Freitas P, Oliveira HP, Pereira T. Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening? Sensors. 2023; 23(12):5597. https://doi.org/10.3390/s23125597
Chicago/Turabian StyleSousa, Joana Vale, Pedro Matos, Francisco Silva, Pedro Freitas, Hélder P. Oliveira, and Tania Pereira. 2023. "Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening?" Sensors 23, no. 12: 5597. https://doi.org/10.3390/s23125597
APA StyleSousa, J. V., Matos, P., Silva, F., Freitas, P., Oliveira, H. P., & Pereira, T. (2023). Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening? Sensors, 23(12), 5597. https://doi.org/10.3390/s23125597