Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant and Fruit Materials
2.2. Growing Conditions
2.3. Measurements
2.3.1. Basic Characteristics
2.3.2. NIR Spectroscopy and Soluble Solids Content (SSC) Measurements as Brix%
2.3.3. Currant Tomato Fruit Measurements
3. Results
3.1. Basic Fruit Characteristics
3.2. Relationships between NIR Value, Brix%, and Fresh Weight of Tomato Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudich, J.; Kalmar, D.; Geizenberg, C.; Harel, S. Low water tension in defined growth stages of processing tomato plants and their effects on yield and quality. J. Hort. Sci. 1977, 52, 391–400. [Google Scholar] [CrossRef]
- Stevens, M.; Rudich, J. Genetic potential for overcoming physiological limitation on adaptability, yield and quality in the tomato. HortScience 1978, 13, 673–678. [Google Scholar] [CrossRef]
- Roohanitaziani, R.; de Maagd, R.A.; Lammers, M.; Molthoff, J.; Meijer-Dekens, F.; van Kaauwen, M.P.W.; Finkers, R.; Tikunov, Y.; Visser, R.G.F.; Bovy, A.G. Exploration of a resequenced tomato core collection for phenotypic and genotypic variation in plant growth and fruit quality traits. Genes 2020, 11, 1278. [Google Scholar] [CrossRef] [PubMed]
- Picha, D.H. Effect of harvest maturity on the final fruit composition of cherry and large-fruited tomato cultivars. J. Am. Soc. Hortic. Sci. 1986, 111, 723–727. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Barrett, D.; Boersig, M. Nondestructive determination of soluble solids in tomatoes using near infrared spectroscopy. J. Food Sci. 1996, 61, 695–697. [Google Scholar] [CrossRef]
- Borba, K.R.; Aykas, D.P.; Milani, M.I.; Colnago, L.A.; Ferreira, M.D.; Rodriguez-Saona, L.E. Portable near Infrared Spectroscopy as a tool for fresh tomato quality control analysis in the field. Appl. Sci. 2021, 11, 3209. [Google Scholar] [CrossRef]
- Walsh, K.B.; McGlone, V.A.; Han, D.H. The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biol. Technol. 2020, 163, 111139. [Google Scholar] [CrossRef]
- Kubota Corp. Fruit and Vegetable Quality Evaluation Equipment, Fruit Selector; Instruction Manual; Kubota Corp.: Osaka, Japan, 2019; p. 40. [Google Scholar]
- Helyes, L.; Pék, Z.; Lugasi, A. Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment. 2008, 37, 427–436. [Google Scholar] [CrossRef]
- Kavitha, P.; Shivashankara, K.S.; Rao, V.K.; Sadashiva, A.T.; Ravishankar, K.V.; Sathish, G.J. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J. Sci. Food Agric. 2014, 94, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, I. Compositional characteristics of currant tomato fruits. Fac. J. Komazawa Women‘s Univ. 2019, 26, 1–6. [Google Scholar]
- Omasa, K.; Ono, E.; Ishigami, Y.; Shimizu, Y.; Araki, Y. Plant functional remote sensing and smart farming applications. Int. J. Agric. Biol. Eng. 2022, 15, 1–6. [Google Scholar] [CrossRef]
- Morimoto, S. Smartization of agriculture using Near Infrared Spectroscopy -Non-destructive measurement technology on-site. Kansai Branch Bull. Jpn. Soc. Agric. Mach. Food Eng. 2020, 127, 93. [Google Scholar]
- Motoki, S.; Someya, M.; Higuchi, Y.; Morimoto, S.; Fujio, T.; Ikeura, H. Non-destructive quality measurement using visible Near-Infrared spectroscopy for determining soluble solid and lycopene content in cherry tomatoes. Food Preserv. Sci. 2018, 44, 145–153. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and instruments for Brix measurement: A Review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Takii & Co., Ltd. Available online: https://www.takii.co.jp/CGI/tsk/shohin/shohin.cgi?breed_seq=00000852&hinmoku_cd=ATM&area_cd=5&daigi_flg=0 (accessed on 15 March 2023).
FW (g) | PD (mm) | ED (mm) | SI | Brix% | Number of Total Samples | ||
---|---|---|---|---|---|---|---|
HG(1) Cherry tomato ‘TY Chika’ | Mean | 10.11 | 24.8 | 25.8 | 0.96 | 9.5 | 110 |
Min–Max | 5.76–19.4 | 20.6–30.1 | 19.6–32.6 | 0.84–1.26 | 6.2–14.2 | ||
HG(2) Currant tomato ‘Microbeads’ | Mean | 1.90 | 12.9 | 14.2 | 0.91 | 8.5 | 80 |
Min–Max | 1.25–2.58 | 10.8–15.1 | 11.7–16.4 | 0.86–1.06 | 7.2–9.9 | ||
M&S tomato (Cherry) | Mean | 15.00 | 27.9 | 29.0 | 0.96 | 6.6 | 64 |
Min–Max | 6.70–21.55 | 20.5–34.8 | 18.9–36.3 | 0.87–1.18 | 4.0–9.0 | ||
M&S tomato (Others) | Mean | 37.20 | 36.3 | 39.6 | 0.92 | 6.1 | 45 |
Min–Max | 13.28–95.84 | 25.6–48.1 | 28.2–56.5 | 0.70–1.0 | 4.7–9.4 | ||
Detail of M&S tomato samples | Mean | ||||||
Cherry tomatoes | |||||||
1. Cherry tomato, Kumamoto Pref., Dec. (UC) | 19.26 | 29.6 | 32.1 | 0.92 | 4.7 | 9 | |
2. Cherry tomato, Kumamoto Pref., Nov (UC) | 16.09 | 28.9 | 30.1 | 0.96 | 5.6 | 10 | |
3. Cherry tomato, Gunma Pref. (UC) (1) | 15.13 | 27.2 | 29.4 | 0.93 | 7.0 | 16 | |
4. Cherry tomato (UC, UPL) | 15.05 | 30.1 | 28.4 | 1.06 | 7.7 | 13 | |
5. Cherry tomato, Gunma Pref. (UC) (2) | 9.47 | 23.8 | 25.0 | 0.95 | 8.0 | 16 | |
Non-cherry tomatoes | |||||||
1. Frutica, medium-sized, Gunma Pref. | 60.15 | 42.5 | 48.3 | 0.88 | 5.8 | 10 | |
2. Medium-sized tomato (UC, UPL) | 51.84 | 41.9 | 45.1 | 0.93 | 5.9 | 8 | |
3. Cocktail tomato variety (UC, UPL) | 28.90 | 35.2 | 36.4 | 0.96 | 6.2 | 8 | |
4. Midi-tomato (UC, UPL) | 23.18 | 30.7 | 34.7 | 0.88 | 5.6 | 11 | |
5. Frutica, small-sized, Gunma Pref. | 21.93 | 31.2 | 33.7 | 0.93 | 7.1 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ino, M.; Ono, E.; Shimizu, Y.; Omasa, K. Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors 2023, 23, 5460. https://doi.org/10.3390/s23125460
Ino M, Ono E, Shimizu Y, Omasa K. Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors. 2023; 23(12):5460. https://doi.org/10.3390/s23125460
Chicago/Turabian StyleIno, Masazumi, Eiichi Ono, Yo Shimizu, and Kenji Omasa. 2023. "Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions" Sensors 23, no. 12: 5460. https://doi.org/10.3390/s23125460
APA StyleIno, M., Ono, E., Shimizu, Y., & Omasa, K. (2023). Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors, 23(12), 5460. https://doi.org/10.3390/s23125460