An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Integrated SECM-Cantilevers/Echemcell
2.2. Electrochemical Characterization
2.3. Preparation of Gold Nano-Meshes
2.4. SECM Measurements
3. Results
3.1. An Electrochemical Cell Integrated into the Glass Packaging of an AFM-SECM-Cantilever
3.2. Preparation of AFM-SECM Cantilevers with Integrated Electrochemical Cell
3.3. Characterization by Cyclic Voltammetry
3.4. SECM-Measurements with the Integrated Electrochemical Cell
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bard, A.J.; Mirkin, M.V. Scanning Electrochemical Microscopy, 2nd ed.; CRC-Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012; ISBN 978-1439831120. [Google Scholar]
- Wittstock, G.; Burchardt, M.; Pust, S.; Shen, Y.; Zhao, C. Scanning Electrochemical Microscopy for Direct Imaging of Reaction Rates. Angew. Chem. Int. Ed. 2007, 46, 1584–1617. [Google Scholar] [CrossRef] [PubMed]
- Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234–13278. [Google Scholar] [CrossRef] [PubMed]
- Kai, T.; Zoski, C.G.; Bard, A.J. Scanning electrochemical microscopy at the nanometer level. Chem. Commun. 2018, 54, 1934–1947. [Google Scholar] [CrossRef] [PubMed]
- Bentley, C.L.; Edmondson, J.; Meloni, G.N.; Perry, D.; Shkirskiy, V.; Unwin, P.R. Nanoscale Electrochemical Mapping. Anal. Chem. 2019, 91, 84–108. [Google Scholar] [CrossRef]
- Lai, Z.; Li, D.; Cai, S.; Liu, M.; Huang, F.; Zhang, G.; Wu, X.; Jin, Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal. Chem. 2023, 95, 357–373. [Google Scholar] [CrossRef]
- Bard, A.J.; Fan, F.R.F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132–138. [Google Scholar] [CrossRef]
- Kwak, J.; Bard, A.J. Scanning electrochemical microscopy. Theory of the feedback mode. Anal. Chem. 1989, 61, 1221–1227. [Google Scholar] [CrossRef]
- Ludwig, M.; Kranz, C.; Schuhmann, W.; Gaub, H.E. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample. Rev. Sci. Instrum. 1995, 66, 2857–2860. [Google Scholar] [CrossRef]
- Holder, M.N.; Gardner, C.E.; Macpherson, J.V.; Unwin, P.R. Combined scanning electrochemical-atomic force microscopy (SECM-AFM): Simulation and experiment for flux-generation at un-insulated metal-coated probes. J. Electroanal. Chem. 2005, 585, 8–18. [Google Scholar] [CrossRef]
- Salomo, M.; Pust, S.E.; Wittstock, G.; Oesterschulze, E. Integrated cantilever probes for SECM/AFM characterization of surfaces. Microelectron Eng. 2010, 87, 1537–1539. [Google Scholar] [CrossRef]
- Nellist, M.R.; Chen, Y.; Mark, A.; Gödrich, S.; Stelling, C.; Jiang, J.; Poddar, R.; Li, C.; Kumar, R.; Papastavrou, G.; et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology 2017, 28, 095711. [Google Scholar] [CrossRef] [PubMed]
- Bretag, A.H. The glass micropipette electrode: A history of its inventors and users to 1950. J. Gen. Physiol. 2017, 149, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Huang, K.; Siepser, N.P.; Baker, L.A. Scanning Ion Conductance Microscopy. Chem. Rev. 2021, 121, 11726–11768. [Google Scholar] [CrossRef]
- Traxler, I.; Singewald, T.D.; Schimo-Aichhorn, G.; Hild, S.; Valtiner, M. Scanning electrochemical microscopy methods (SECM) and ion-selective microelectrodes for corrosion studies. Corros. Rev. 2022, 40, 515–542. [Google Scholar] [CrossRef]
- Santana Santos, C.; Jaato, B.N.; Sanjuán, I.; Schuhmann, W.; Andronescu, C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem. Rev. 2023, 123, 4972–5019. [Google Scholar] [CrossRef]
- Santos, C.S.; Botz, A.; Bandarenka, A.S.; Ventosa, E.; Schuhmann, W. Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Li-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202202744. [Google Scholar] [CrossRef]
- Daboss, S.; Rahmanian, F.; Stein, H.S.; Kranz, C. The potential of scanning electrochemical probe microscopy and scanning droplet cells in battery research. Electrochem. Sci. Adv. 2022, 2, e202100122. [Google Scholar] [CrossRef]
- He, R.; Zhou, L.; Tenent, R.; Zhou, M. Basics of the scanning electrochemical microscope and its application in the characterization of lithium-ion batteries: A brief review. Mater. Chem. Front. 2023, 7, 662–678. [Google Scholar] [CrossRef]
- Macpherson, J.V.; Unwin, P.R. Combined Scanning Electrochemical−Atomic Force Microscopy. Anal. Chem. 2000, 72, 276–285. [Google Scholar] [CrossRef]
- Abbou, J.; Demaille, C.; Druet, M.; Moiroux, J. Fabrication of Submicrometer-Sized Gold Electrodes of Controlled Geometry for Scanning Electrochemical-Atomic Force Microscopy. Anal. Chem. 2002, 74, 6355–6363. [Google Scholar] [CrossRef]
- Dobson, P.S.; Weaver, J.M.R.; Holder, M.N.; Unwin, P.R.; Macpherson, J.V. Characterization of Batch-Microfabricated Scanning Electrochemical-Atomic Force Microscopy Probes. Anal. Chem. 2005, 77, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Pobelov, I.V.; Mohos, M.; Yoshida, K.; Kolivoska, V.; Avdic, A.; Lugstein, A.; Bertagnolli, E.; Leonhardt, K.; Denuault, G.; Gollas, B.; et al. Electrochemical current-sensing atomic force microscopy in conductive solutions. Nanotechnology 2013, 24, 115501–115511. [Google Scholar] [CrossRef] [PubMed]
- Kranz, C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 2014, 139, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Wain, A.J.; Pollard, A.J.; Richter, C. High-Resolution Electrochemical and Topographical Imaging Using Batch-Fabricated Cantilever Probes. Anal. Chem. 2014, 86, 5143–5149. [Google Scholar] [CrossRef] [PubMed]
- Eifert, A.; Mizaikoff, B.; Kranz, C. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Micron 2015, 68, 27–35. [Google Scholar] [CrossRef]
- Huang, Z.; De Wolf, P.; Poddar, R.; Li, C.; Mark, A.; Nellist, M.R.; Chen, Y.; Jiang, J.; Papastavrou, G.; Boettcher, S.W.; et al. PeakForce Scanning Electrochemical Microscopy with Nanoelectrode Probes. Microsc. Today 2016, 24, 18–25. [Google Scholar] [CrossRef]
- Nellist, M.R.; Laskowski, F.A.L.; Qiu, J.; Hajibabaei, H.; Sivula, K.; Hamann, T.W.; Boettcher, S.W. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 2018, 3, 46–52. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods; Wiley: Hoboken, NJ, USA; Chichester, UK,, 2022; ISBN 978-1119334064. [Google Scholar]
- Fahrenkrug, E.; Alsem, D.H.; Salmon, N.; Maldonado, S. Electrochemical Measurements in In Situ TEM Experiments. J. Electrochem. Soc. 2017, 164, H358–H364. [Google Scholar] [CrossRef]
- Stricker, E.A.; Ke, X.; Wainright, J.S.; Unocic, R.R.; Savinell, R.F. Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometries. J. Electrochem. Soc. 2019, 166, H126–H134. [Google Scholar] [CrossRef]
- Kranz, C.; Friedbacher, G.; Mizaikoff, B.; Lugstein, A.; Smoliner, J.; Bertagnolli, E. Integrating an Ultramicroelectrode in an AFM Cantilever: Combined Technology for Enhanced Information. Anal. Chem. 2001, 73, 2491–2500. [Google Scholar] [CrossRef]
- Spaine, T.W.; Baur, J.E. A Positionable Microcell for Electrochemistry and Scanning Electrochemical Microscopy in Subnanoliter Volumes. Anal. Chem. 2001, 73, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Turcu, F.; Schulte, A.; Schuhmann, W. Scanning electrochemical microscopy (SECM) of nanolitre droplets using an integrated working/reference electrode assembly. Anal. Bioanal. Chem. 2004, 380, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Knittel, P.; Bibikova, O.; Kranz, C. Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles. Faraday Discuss. 2016, 193, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.W.; Kadara, R.O.; Banks, C.E. Screen Printed Electrochemical Architectures (Springer Briefs in Applied Sciences and Technology); Springer International Publishing: Heidelberg, Germany; New York, NY, USA,, 2016; ISBN 978-3319251912. [Google Scholar]
- Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007, 73, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef]
- Muschietti, A.; Serrano, N.; Ariño, C.; Díaz-Cruz, M.S.; Díaz-Cruz, J.M. Screen-Printed Electrodes for the Voltammetric Sensing of Benzotriazoles in Water. Sensors 2020, 20, 1839. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors 2020, 10, 118. [Google Scholar] [CrossRef]
- Torres-Rivero, K.; Pérez-Ràfols, C.; Bastos-Arrieta, J.; Florido, A.; Martí, V.; Serrano, N. Direct As(V) Determination Using Screen-Printed Electrodes Modified with Silver Nanoparticles. Nanomaterials 2020, 10, 1280. [Google Scholar] [CrossRef]
- Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors 2020, 10, 9. [Google Scholar] [CrossRef]
- Mincu, N.-B.; Lazar, V.; Stan, D.; Mihailescu, C.M.; Iosub, R.; Mateescu, A.L. Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics 2020, 10, 517. [Google Scholar] [CrossRef]
- Costa-Rama, E.; Fernández-Abedul, M.T. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors 2021, 11, 51. [Google Scholar] [CrossRef]
- Gomes, R.S.; Gomez-Rodríguez, B.A.; Fernandes, R.; Sales, M.G.F.; Moreira, F.T.C.; Dutra, R.F. Plastic Antibody of Polypyrrole/Multiwall Carbon Nanotubes on Screen-Printed Electrodes for Cystatin C Detection. Biosensors 2021, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Retsch, M.; Zhou, Z.; Rivera, S.; Kappl, M.; Zhao, X.S.; Jonas, U.; Li, Q. Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface. Macromol. Chem. Phys. 2009, 210, 230–241. [Google Scholar] [CrossRef]
- Stelling, C.; Mark, A.; Papastavrou, G.; Retsch, M. Showing particles their place: Deterministic colloid immobilization by gold nanomeshes. Nanoscale 2016, 8, 14556–14564. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, S.; Siegenthaler, H.; Papastavrou, G. Diffuse layer properties of thiol-modified gold electrodes probed by direct force measurements. Langmuir 2007, 23, 9083–9091. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Papastavrou, G. Adhesion of colloidal particles on modified electrodes. Langmuir 2012, 28, 16567–16579. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Papastavrou, G. Ion Adsorption on Modified Electrodes as Determined by Direct Force Measurements under Potentiostatic Control. J. Phys. Chem. C 2014, 118, 2673–2685. [Google Scholar] [CrossRef]
- Karg, A.; Rößler, T.; Mark, A.; Markus, P.; Lauster, T.; Helfricht, N.; Papastavrou, G. A Versatile and Simple Approach to Electrochemical Colloidal Probes for Direct Force Measurements. Langmuir 2021, 37, 13537–13547. [Google Scholar] [CrossRef]
- Gullo, M.R.; Frederix, P.L.T.M.; Akiyama, T.; Engel, A.; de Rooij, N.F.; Staufer, U. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy. Anal. Chem. 2006, 78, 5436–5442. [Google Scholar] [CrossRef]
- Walker, S.M.; Marcano, M.C.; Bender, W.M.; Becker, U. Imaging the reduction of chromium (VI) on magnetite surfaces using in situ electrochemical AFM. Chem. Geol. 2016, 429, 60–74. [Google Scholar] [CrossRef]
- Knittel, P.; Zhang, H.; Kranz, C.; Wallace, G.G.; Higgins, M.J. Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM. Nanoscale 2016, 8, 4475–4481. [Google Scholar] [CrossRef] [PubMed]
- Leenheer, A.J.; Sullivan, J.P.; Shaw, M.J.; Harris, C.T. A Sealed Liquid Cell for In Situ Transmission Electron Microscopy of Controlled Electrochemical Processes. J. Microelectromechanical Syst. 2015, 24, 1061–1068. [Google Scholar] [CrossRef]
- Taheri, M.L.; Stach, E.A.; Arslan, I.; Crozier, P.A.; Kabius, B.C.; LaGrange, T.; Minor, A.M.; Takeda, S.; Tanase, M.; Wagner, J.B.; et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry; World Scientific: Hackensack, NJ, USA; London, UK; Singapore, 2018; ISBN 978-1786345264. [Google Scholar]
- Mirkin, M.V.; Amemiya, S. Nanoelectrochemistry; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2015; ISBN 978-1466561199. [Google Scholar]
- Criscuolo, F.; Galfione, M.; Carrara, S.; De Micheli, G. All-solid-state Reference Electrodes for analytical applications. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy, 13–14 June 2019. [Google Scholar] [CrossRef]
- Petrovic, S. Cyclic Voltammetry of Hexachloroiridate(IV): An Alternative to the Electrochemical Study of the Ferricyanide Ion. Chem. Educ. 2000, 5, 231–235. [Google Scholar] [CrossRef]
- Ji, X.; Banks, C.E.; Crossley, A.; Compton, R.G. Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes. ChemPhysChem 2006, 7, 1337–1344. [Google Scholar] [CrossRef]
- Sun, P.; Laforge, F.O.; Mirkin, M.V. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 2007, 9, 802–823. [Google Scholar] [CrossRef]
- Knittel, P.; Mizaikoff, B.; Kranz, C. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy. Anal. Chem. 2016, 88, 6174–6178. [Google Scholar] [CrossRef]
- Zeng, Z.; Liang, W.-I.; Liao, H.-G.; Xin, H.L.; Chu, Y.-H.; Zheng, H. Visualization of Electrode–Electrolyte Interfaces in LiPF6/EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM. Nano Lett. 2014, 14, 1745–1750. [Google Scholar] [CrossRef]
- Girod, R.; Nianias, N.; Tileli, V. Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope. Microsc. Microanal. 2019, 25, 1304–1310. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Rowley-Neale, S.J.; Banks, C.E. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021, 3, 100032. [Google Scholar] [CrossRef]
- Singh, S.; Wang, J.; Cinti, S. Review—An Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors. ECS Sens. Plus 2022, 1, 023401. [Google Scholar] [CrossRef]
- Ventosa, E.; Schuhmann, W. Scanning electrochemical microscopy of Li-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 28441–28450. [Google Scholar] [CrossRef] [PubMed]
- Mahankali, K.; Thangavel, N.K.; Reddy Arava, L.M. In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM. Nano Lett. 2019, 19, 5229–5236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Smith, K.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L. Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. ACS Appl. Mater. Interfaces 2020, 12, 35132–35141. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-Y.; Chou, T.-C. Fabrication of a Planar-Form Screen-Printed Solid Electrolyte Modified Ag/AgCl Reference Electrode for Application in a Potentiometric Biosensor. Anal. Chem. 2006, 78, 4219–4223. [Google Scholar] [CrossRef]
- Guth, U.; Gerlach, F.; Decker, M.; Oelßner, W.; Vonau, W. Solid-state reference electrodes for potentiometric sensors. J. Solid State Electrochem. 2009, 13, 27–39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karg, A.; Gödrich, S.; Dennstedt, P.; Helfricht, N.; Retsch, M.; Papastavrou, G. An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy. Sensors 2023, 23, 5228. https://doi.org/10.3390/s23115228
Karg A, Gödrich S, Dennstedt P, Helfricht N, Retsch M, Papastavrou G. An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy. Sensors. 2023; 23(11):5228. https://doi.org/10.3390/s23115228
Chicago/Turabian StyleKarg, Andreas, Sebastian Gödrich, Philipp Dennstedt, Nicolas Helfricht, Markus Retsch, and Georg Papastavrou. 2023. "An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy" Sensors 23, no. 11: 5228. https://doi.org/10.3390/s23115228