# Using Barometer for Floor Assignation within Statistical Indoor Localization

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Recursive State Estimation

## 3. Statistical Indoor Localization

- (1)
- Drawing a distance d from a distribution that, depending on the interval between successive transitions, resembles the gait and speed of a pedestrian.
- (2)
- Obtaining the vertex ${v}_{x,y,z}$ in which the old state ${\mathbf{q}}_{t}$ resides.
- (3)
- Walking randomly along adjacent edges depending on their probability $p(e\mid {\mathbf{q}}_{t})$ and subtracting their length from d until $d\le 0$ is reached
- (4)
- Slightly scattering the final destination by picking a random position within the square. The target vertex ${v}_{{x}^{\prime},{y}^{\prime},{z}^{\prime}}^{\prime}$ denotes:$$({x}_{e},{y}_{e},z),\phantom{\rule{5.0pt}{0ex}}{x}_{e}\sim \mathcal{U}({x}^{\prime}\pm \frac{s}{2}),\phantom{\rule{5.0pt}{0ex}}{y}_{e}\sim \mathcal{U}({y}^{\prime}\pm \frac{s}{2}).$$

## 4. Floor Assignation

## 5. Experimental Results

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Grimes, J. Global Positioning System Standard Positioning Service Performance Standard; Technical Report; Department of Defense United States of America: Arlington, VA, USA, 2008. [Google Scholar]
- Mautz, R. Indoor Positioning Technologies. Ph.D. Thesis, Habilitationsschrift ETH Zürich, Zürich, Switzerland, 2012. [Google Scholar]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq. Identif.
**2020**, 4, 222–233. [Google Scholar] [CrossRef] - Ouyang, G.; Abed-Meraim, K. A Survey of Magnetic-Field-Based Indoor Localization. Electronics
**2022**, 11, 864. [Google Scholar] [CrossRef] - Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Blanchart, P.; He, L.; Le Gland, F. Information Fusion for Indoor Localization. In Proceedings of the 2009 12th International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009; pp. 2083–2090. [Google Scholar]
- Fetzer, T.; Ebner, F.; Bullmann, M.; Deinzer, F.; Grzegorzek, M. Smartphone-Based Indoor Localization within a 13th Century Historic Building. Sensors
**2018**, 18, 4095. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Guo, X.; Ansari, N.; Hu, F.; Shao, Y.; Elikplim, N.R.; Li, L. A Survey on Fusion-Based Indoor Positioning. IEEE Commun. Surv. Tutor.
**2020**, 22, 566–594. [Google Scholar] [CrossRef] - Muralidharan, K.; Khan, A.J.; Misra, A.; Balan, R.K.; Agarwal, S. Barometric Phone Sensors: More Hype Than Hope! In Proceedings of the 15th Workshop on Mobile Computing Systems and Applications. Santa Barbara, CA, USA, 26–27 February 2014; pp. 12:1–12:6. [Google Scholar]
- Ebner, M.; Fetzer, T.; Bullmann, M.; Kastner, S.; Deinzer, F.; Grzegorzek, M. PIPF: Proposal-Interpolating Particle Filter. In Proceedings of the 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–8 September 2022. [Google Scholar]
- Parviainen, J.; Kantola, J.; Collin, J. Differential Barometry in Personal Navigation. In Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 148–152. [Google Scholar]
- STMicroelectronics. LPS331AP—MEMS Pressure Sensor: 260-1260 mbar Absolute Digital Output Barometer; STMicroelectronics N.V.: Plan-les-Ouates, Geneva, Switzerland, 2012; Rev. 7. [Google Scholar]
- Bosch Sensortec. BMP180—Digital Pressure Sensor; Bosch Sensortec GmbH: Reutlingen, Germany, 2015. [Google Scholar]
- Li, B.; Harvey, B.; Gallagher, T. Using barometers to determine the height for indoor positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–7. [Google Scholar]
- Wang, H.; Lenz, H.; Szabo, A.; Hanebeck, U.D.; Bamberger, J. Fusion of Barometric Sensors, WLAN Signals and Building Information for 3-D Indoor/Campus Localization. In Proceedings of the International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006), Heidelberg, Germany, 3–6 September 2006; pp. 426–432. [Google Scholar]
- Ye, H.; Gu, T.; Tao, X.; Lu, J. Scalable floor localization using barometer on smartphone: Scalable floor localization using barometer on smartphone. Wirel. Commun. Mob. Comput.
**2016**, 16, 2557–2571. [Google Scholar] [CrossRef] [Green Version] - Köping, L.; Grzegorzek, M.; Deinzer, F. Probabilistic Step and Turn Detection in Indoor Localisation. In Proceedings of the Data Fusion and Target Tracking Conference, London, UK, 4–5 December 2014. [Google Scholar]
- Isard, M.; Blake, A. CONDENSATION—Conditional Density Propagation for Visual Tracking. Int. J. Comput. Vis.
**1998**, 29, 5–28. [Google Scholar] [CrossRef] - Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel Approach to nonlinear/non-Gaussian Bayesian State Estimation. IEE Proc. F Radar Signal Process.
**1993**, 140, 107–113. [Google Scholar] [CrossRef] [Green Version] - Fetzer, T.; Ebner, F.; Deinzer, F.; Grzegorzek, M. Recovering from Sample Impoverishment in Context of Indoor Localisation. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Bullmann, M.; Fetzer, T.; Ebner, F.; Ebner, M.; Deinzer, F.; Grzegorzek, M. Comparison of 2.4 GHz WiFi FTM- and RSSI-Based Indoor Positioning Methods in Realistic Scenarios. Sensors
**2020**, 20, 4515. [Google Scholar] [CrossRef] [PubMed] - Deinzer, F.; Denzler, J.; Niemann, H. On Fusion of Multiple Views for Active Object Recognition. In Joint Pattern Recognition Symposium; Radig, B., Ed.; Springer: Heidelberg, Germany, 2001; Volume 2191, pp. 239–245. [Google Scholar]
- Ebner, F.; Fetzer, T.; Köping, L.; Grzegorzek, M.; Deinzer, F. Multi Sensor 3D Indoor Localisation. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015. [Google Scholar]
- Tian, J.; Hähner, J.; Becker, C.; Stepanov, I.; Rothermel, K. Graph-based Mobility Model for Mobile Ad Hoc Network Simulation. In Proceedings of the 35th Annual Simulation Symposium, San Deigo, CA, USA, 14–18 April 2002; pp. 337–344. [Google Scholar]
- Condon, E.; Odishaw, H. Handbook of Physics; McGraw-Hill Handbooks; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Publishing: San Diego, CA, USA, 1997. [Google Scholar]
- Fetzer, T.; Ebner, F.; Köping, L.; Grzegorzek, M.; Deinzer, F. On Monte Carlo Smoothing in Multi Sensor Indoor Localisation. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016. [Google Scholar]
- Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Wi-Fi Model Optimizations for Smartphone-Based Indoor Localization. ISPRS Int. J. Geo-Inf.
**2017**, 6, 233. [Google Scholar] [CrossRef]

**Figure 1.**Recordings of absolute pressure readings for two scenarios. (

**a**) 12 h pressure trend on a single floor using a Galaxy S3 (green) and two Nexus 4 (blue). The width of the lines describes the uncertainty of the measurements. (

**b**) Recordings of three pressure readings on three different levels at three different times across three different days. The figures are based on the datasets provided by [9].

**Figure 2.**A typical localization results for the first path using (

**a**) all sensors except the barometer model and (

**b**) including it. The path is $220\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$ long and it takes $5\phantom{\rule{0.166667em}{0ex}}\mathrm{min}$ to walk it.

**Figure 3.**A typical localization results for the second path using (

**a**) all sensors except the barometer model and (

**b**) including it. The path is $120\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$ long and it takes $3\phantom{\rule{0.166667em}{0ex}}\mathrm{min}$ to walk it.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fetzer, T.; Ebner, F.; Deinzer, F.; Grzegorzek, M.
Using Barometer for Floor Assignation within Statistical Indoor Localization. *Sensors* **2023**, *23*, 80.
https://doi.org/10.3390/s23010080

**AMA Style**

Fetzer T, Ebner F, Deinzer F, Grzegorzek M.
Using Barometer for Floor Assignation within Statistical Indoor Localization. *Sensors*. 2023; 23(1):80.
https://doi.org/10.3390/s23010080

**Chicago/Turabian Style**

Fetzer, Toni, Frank Ebner, Frank Deinzer, and Marcin Grzegorzek.
2023. "Using Barometer for Floor Assignation within Statistical Indoor Localization" *Sensors* 23, no. 1: 80.
https://doi.org/10.3390/s23010080