Correlations between the EMG Structure of Movement Patterns and Activity of Postural Muscles in Able-Bodied and Wheelchair Fencers
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Wheelchair Fencers
4.2. Able-Bodied Fencers
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RT | right side |
LT | left side |
DEL | deltoideus middle head |
TRI | triceps brachii |
BC | biceps brachii |
ECR | extensor carpi radialis longus |
FCR | flexor carpi radialis |
LD | latissimus dorsi |
EAO | external abdominal oblique |
x, y, z | channel–accelerometer in 3 axes |
GRF | ground reaction forces |
Fz rear | vertical force of the rear foot |
CRT | complex reaction time |
MVC | maximal voluntary contraction |
LAT GAS | gastrocnemius caput laterale |
MED GAS | gastrocnemius caput mediale |
ECR | extensor carpi radialis |
FCU | flexor carpi ulnaris |
BB | biceps brachii |
TB | triceps brachii (lateral capture) |
RF | rectus femoris |
BF | biceps femoris |
References
- Bernstein, N. The Co-Ordination and Regulation of Movements, Hardcover, 1st ed.; Pergamon Press Ltd.: Oxford, UK, 1967; p. 193. [Google Scholar]
- Schmidt, R.A. Motor Control and Learning: A Behavioral Emphasis, 2nd ed.; Human Kinetics Publishers, Inc.: Champaign, IL, USA; University of California: Los Angeles, CA, USA, 1988; pp. 64–65. [Google Scholar]
- Sadowski, B. Biologiczne Mechanizmy Zachowania Ludzi i Zwierząt; PWN: Warszawa, Poland, 2001; p. 293. [Google Scholar]
- Vanlandewijck, Y. Sport science in the paralympic movement. J. Rehabil. Res. Dev. 2006, 43, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. Centre of pressure versus centre of mass stabilization strategies: The tightrope balancing case. R. Soc. Open Sci. 2020, 7, 200111. [Google Scholar] [CrossRef] [PubMed]
- Tigrini, A.; Verdini, F.; Fioretti, S.; Mengarelli, A. Center of pressure plausibility for the double-link human stance model under the intermittent control paradigm. J. Biomech. 2021, 128, 110725. [Google Scholar] [CrossRef] [PubMed]
- Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.; et al. Wearable sensors in sports for persons with disability: A systematic review. Sensors 2021, 21, 1858. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyszyn, M.; Konieczny, M.; Pakosz, P. Analysis of ankle sEMG on both stable and unstable surfaces for elderly and young women—A pilot study. Int. J. Environ. Res. Public Health 2019, 16, 1544. [Google Scholar] [CrossRef] [Green Version]
- Fliess-Douer, O.; Mason, B.; Katz, L.; So, C.H. Sport and technology. In Handbook of Sports Medicine and Science: Training and Coaching the Paralympic Athlete; John Wiley and Sons: Hoboken, NJ, USA, 2016; pp. 150–171. [Google Scholar]
- Juras, G.; Słomka, K. Anticipatory postural adjustment in dart throwing. J. Hum. Kinet. 2013, 37, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M. Neuro-Muscular, Perceptual and Temporal Determinants of Movement Patterns in Wheelchair Fencing–Preliminary Study; BioMed Research International: New Delhi, India, 2020; pp. 1–8. [Google Scholar]
- Borysiuk, Z. The significance of sensorimotor response components and EMG signals depending on stimuli type in fencing. Acta Univ. Palacki. Olomuc. Gymn. 2008, 38, 43–51. [Google Scholar]
- Witkowski, M.; Tomczak, M.; Bronikowski, M.; Tomczak, E.; Marciniak, M.; Borysiuk, Z. Visual perception strategies of foil fencers facing right-versus left-handed opponents. Percept. Mot. Ski. 2018, 125, 612–625. [Google Scholar]
- Chung, W.M.; Yeung, S.; Wong, A.Y.; Lam, I.F.; Tse, P.T.; Daswani, D.; Lee, R. Musculoskeletal injuries in elite able-bodied and wheelchair foil fencers—A pilot study. Clin. J. Sport Med. 2012, 22, 278–280. [Google Scholar] [CrossRef]
- Boguszewski, D.; Torzewska, P. Martial arts as methods of physical rehabilitation for disabled people. J. Combat Sports Martial Arts 2011, 2, 1–6. [Google Scholar] [CrossRef]
- Balko, S.; Rous, M.; Balko, I.; Hnizdil, J.; Borysiuk, Z. Influence of a 9-week training intervention on the reaction time of fencers aged 15 to 18 years. Phys. Act. Rev. 2017, 5, 146–154. [Google Scholar] [CrossRef]
- Bernardi, M.; Guerra, E.; Di Giacinto, B.; Di Cesare, A.; Castellano, V.; Bhambhani, Y. Field evaluation of paralympic athletes in selected sports: Implications for training. Med. Sci. Sport. Exerc. 2010, 42, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, X.; Rodríguez, F.A.; Tarragó, R.; Bottoms, L.; Vallejo, L.; Rodríguez-Zamora, L.; Price, M. Physiological demands of standing and wheelchair fencing in able-bodied fencers. J. Sports Med. Phys. Fit. 2019, 59, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyszyn, M.; Borysiuk, Z.; Piechota, K.; Kręcisz, K.; Zmarzły, D. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers. BMC Sports Sci. Med. Rehabil. 2021, 13, 140. [Google Scholar] [CrossRef]
- Stewart, S.I.; Kopetka, B. The kinematic determinants of speed in the fencing lunge. J. Sport Sci. 2005, 23, 105. [Google Scholar]
- Borysiuk, Z.; Błaszczyszyn, M.; Piechota, K.; Balko, S.; Waśkiewicz, Z. EMG structure, ground reaction forces as anticipatory indicators of the fencing lunge effectiveness. Arch. Budo 2022, 18, 13–22. [Google Scholar]
- Bottoms, L.; Greenhalgh, A.; Sinclair, J. Kinematic determinants of weapon velocity during the fencing lunge in experienced epée fencers. Acta Bioeng. Biomech. 2013, 15, 109–113. [Google Scholar]
- Chow, J.W.; Millikan, T.A.; Carlton, L.G.; Chae, W.S.; Lim, Y.T.; Morse, M.I. Kinematic and electromyographic analysis of wheelchair propulsion on ramps of different slopes for young men with paraplegia. Arch. Phys. Med. Rehabil. 2009, 90, 271–278. [Google Scholar] [CrossRef]
- Gutierrez-Davila, M.; Rojas, F.J.; Antonio, R.; Navarro, E. Response timing in the lunge and target change in elite versus medium-level fencers. Eur. J. Sport Sci. 2013, 13, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Guo, L.; Wu, W.; Zhang, L.; Warburton, D.E.R. Biomechanical insights into the determinants of speed in the fencing lunge. Biomech. Mot. Control. 2017, 18, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, M.; Tabrizi, A.; Farahmand, F. Kinematics analysis of lunge fencing using stereophotogrametry. World J. Sport Sci. 2008, 1, 32–37. [Google Scholar]
- Turner, A.; James, N.; Dimitriou, L.; Greenhalgh, A.; Moody, J.; Fulcher, D.; Kilduff, L. Determinants of olympic fencing performance and implications for strength and conditioning training. J. Strength Cond. Res. 2014, 28, 3001–3011. [Google Scholar] [CrossRef] [PubMed]
- Balkó, Š.; Borysiuk, Z.; Balkó, I.; Špulák, D. The influence of different performance level of fencers on muscular coordination and reaction time during the fencing lunge. Arch. Budo 2016, 12, 49–59. [Google Scholar]
- Harmer, P.A. Incidence and characteristics of time-loss injuries in competitive fencing: A prospective, 5-year study of national competitions. Clin. J. Sport Med. 2008, 18, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M.; Konieczny, M.; Witkowski, M. Movement patterns and sensorimotor responses: Comparison of men and women in wheelchair fencing based on the Polish Paralympic team. Arch. Budo 2020, 16, 19–26. [Google Scholar]
- Kriventsova, I.; Iermakov, S.; Bartik, P.; Nosko, M.; Cynarski, W.J. Optimization of student-fencers’ tactical training. Ido Mov. Cult. J. Martial Arts Anthropol. 2017, 17, 21–30. [Google Scholar]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.A.; van der Kruk, E.; Rossi, S. Sport biomechanics applications using inertial, force, and emg sensors: A literature overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [Google Scholar] [CrossRef]
- Rosso, V.; Gastaldi, L.; Rapp, W.; Lindinger, S.; Vanlandewijck, Y.; Äyrämö, S.; Linnamo, V. Balance perturbations as a measurement tool for trunk impairment in cross-country sit skiing. Adapt. Phys. Act. Q. 2018, 36, 61–76. [Google Scholar] [CrossRef]
- Rehm, J.M.; Jagodinsky, A.E.; Wilburn, C.M.; Smallwood, L.L.; Windham, J.B.; Weimar, W.H. Measuring trunk stability for wheelchair basketball classification: A new field test. Clin. Kinesiol. 2019, 73, 1–7. [Google Scholar]
- Teles, L.J.L.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Almeida-Neto, P.F.; Neves, E.B.; Moreira, O.C.; Ribeiro Neto, F.; Garrido, N.D.; Vilaça-Alves, J.; et al. Static and dynamic strength indicators in paralympic power-lifters with and without spinal cord injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef] [PubMed]
- Nemet, B.K.; Terebessy, T.; Bejek, Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv. Hetil. 2019, 160, 2061–2066. [Google Scholar]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How can biomechanics improve physical preparation and performance in paralympic athletes? A narrative review. Sports 2021, 9, 89. [Google Scholar] [PubMed]
- Villiere, A.; Mason, B.; Parmar, N.; Maguire, N.; Holmes, D.; Turner, A. The physical characteristics underpinning performance of wheelchair fencing athletes: A Delphi study of Paralympic coaches. J. Sports Sci. 2021, 39, 2006–2014. [Google Scholar] [CrossRef] [PubMed]
- Skorupska, E.; Dybek, T.; Wotzka, D.; Rychlik, M.; Jokiel, M.; Pakosz, P.; Konieczny, M.; Domaszewski, P.; Dobrakowski, P. MATLAB analysis of SP test results—An unusual parasympathetic nervous system activity in low back leg pain: A case report. Appl. Sci. 2022, 12, 1970. [Google Scholar] [CrossRef]
Muscle | Variable | Wald-Wolfowitz Runs Test | |||
---|---|---|---|---|---|
Mean A Time (s) | Mean B Time (s) | Z | p-Value | ||
DEL RT | Time (ms) | 0.489 | 0.540 | 1.334 | 0.182 |
TRI RT | Time (ms) | 0.560 | 0.575 | 0.485 | 0.628 |
ECR RT | Time (ms) | 0.380 | 0.527 | 1.334 | 0.182 |
LD RT | Time (ms) | 0.420 | 0.562 | −0.364 | 0.716 |
LD LT | Time (ms) | 0.333 | 0.522 | −2.062 | 0.039 |
BC RT | Time (ms) | 0.547 | 0.520 | 0.485 | 0.628 |
FCR RT | Time (ms) | 0.617 | 0.631 | 0.485 | 0.628 |
EAO RT | Time (ms) | 0.408 | 0.489 | −0.364 | 0.716 |
EAO LT | Time (ms) | 0.435 | 0.456 | 0.485 | 0.628 |
LAT GAS | MED GAS | |
---|---|---|
Fencer 1 | 0.74 (0) | 0.66 (0.013) |
Fencer 2 | 0.86 (0.017) | 0.87 (0.025) |
Fencer 3 | 0.75 (−0.002) | 0.67 (0.022) |
Fencer 4 | 0.85 (0.022) | 0.81 (0.030) |
Fencer 5 | 0.85 (0.031) | 0.79 (0) |
Fencer 6 | −0.51 (0.473) | −0.52 (0.462) |
Fencer 7 | 0.61 (−0.013) | 0.74 (0.011) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borysiuk, Z.; Blaszczyszyn, M.; Piechota, K.; Konieczny, M.; Cynarski, W.J. Correlations between the EMG Structure of Movement Patterns and Activity of Postural Muscles in Able-Bodied and Wheelchair Fencers. Sensors 2023, 23, 135. https://doi.org/10.3390/s23010135
Borysiuk Z, Blaszczyszyn M, Piechota K, Konieczny M, Cynarski WJ. Correlations between the EMG Structure of Movement Patterns and Activity of Postural Muscles in Able-Bodied and Wheelchair Fencers. Sensors. 2023; 23(1):135. https://doi.org/10.3390/s23010135
Chicago/Turabian StyleBorysiuk, Zbigniew, Monika Blaszczyszyn, Katarzyna Piechota, Mariusz Konieczny, and Wojciech J. Cynarski. 2023. "Correlations between the EMG Structure of Movement Patterns and Activity of Postural Muscles in Able-Bodied and Wheelchair Fencers" Sensors 23, no. 1: 135. https://doi.org/10.3390/s23010135