# Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Method

#### 2.1. Dictionary Learning

**α**obtained by learning the LR dictionary ${\mathit{D}}_{\mathrm{L}}$,

#### 2.2. Sparse-Coding and Reconstruction

Algorithm 1. Reconstruction algorithm for sparse coding super-resolution (ScSR). |

0: Learn HR and LR dictionaries, ${\mathit{D}}_{\mathrm{H}}$ and ${\mathit{D}}_{\mathrm{L}}$ 1: Input: dictionaries, ${\mathit{D}}_{\mathrm{H}}$ and ${\mathit{D}}_{\mathrm{L}}$, edge components of an LR image $\mathit{Y}$2: Split an LR image ${\mathit{Y}}_{\mathbf{0}}$ into high- and low-frequency components, $\mathit{Y}$ and ${\mathit{Y}}_{\mathrm{blur}}$. 3: Extract LR patches ${\mathit{P}}_{\mathrm{L}}$ from the edge components of $\mathit{Y}$. 4: $\widehat{\mathit{\alpha}}\leftarrow \mathit{S}\mathit{p}\mathit{a}\mathit{r}\mathit{s}\mathit{e}\mathit{C}\mathit{o}\mathit{d}\mathit{i}\mathit{n}\mathit{g}\left({\mathit{D}}_{\mathrm{L}},{\mathit{P}}_{\mathrm{L}}\right)$ 5: Generate the HR patch: ${\widehat{\mathit{P}}}_{\mathrm{H}}\leftarrow {\mathit{D}}_{\mathrm{H}}\widehat{\mathit{\alpha}}$. 6: Up-sample the high-frequency component of the LR image, $\mathit{U}\leftarrow \mathit{Q}\mathit{Y}$ 7: Superpose the adjacent patches and add $\mathit{U}$: ${\widehat{\mathit{X}}}_{\mathrm{p}}\leftarrow \mathit{F}{\widehat{\mathit{P}}}_{\mathrm{H}}+\mathit{U}.$ 8: Find ${\mathit{X}}^{*}$ which satisfies the constraint: ${\mathit{X}}^{*}=\mathrm{arg}\underset{\mathit{X}}{\mathrm{min}}\Vert \mathit{S}\mathit{H}\mathit{X}-\mathit{Y}{\Vert}_{2}^{2}$. 9: Up-sample the low-frequency component of the LR image: ${\widehat{\mathit{Y}}}_{\mathrm{blur}}\leftarrow \mathit{Q}{\mathit{Y}}_{\mathrm{blur}}$. 10: Take a summation of reconstructed component ${\mathit{X}}^{*}$ and up-sampled component ${\widehat{\mathit{Y}}}_{\mathrm{blur}}$: $\widehat{\mathit{X}}\leftarrow {\mathit{X}}^{*}+{\widehat{\mathit{Y}}}_{\mathrm{blur}}$. 11: Output: SR image $\widehat{\mathit{X}}$. |

## 3. Data and Implementation

## 4. Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- GEBCO_2021. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 10 February 2022).
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation-GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences
**2018**, 8, 63. [Google Scholar] [CrossRef] [Green Version] - DeSET Project. Available online: https://deset-en.lne.st/ (accessed on 10 February 2022).
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image Super-Resolution as Sparse Representation of Raw Image Patches. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Kim, K.I.; Kwon, Y. Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior. IEEE Trans. Pattern Anal. Mach. Intell.
**2010**, 32, 1127–1133. [Google Scholar] [CrossRef] [PubMed] - Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution via Sparse Representation. IEEE Trans. Image Process.
**2010**, 19, 2861–2873. [Google Scholar] [CrossRef] - Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Trans. Image Process.
**2011**, 20, 1838–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dai, D.; Timofte, R.; van Gool, L. Jointly Optimized Regressors for Image Super-Resolution. Computer Graphics Forum.
**2015**, 34, 95–104. [Google Scholar] [CrossRef] - Elad, M.; Aharon, M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries. IEEE Trans. Image Process.
**2006**, 15, 3736–3745. [Google Scholar] [CrossRef] - Kato, T.; Hino, H.; Murata, N. Multi-Frame Image Super Resolution Based on Sparse Coding. Neural Netw.
**2015**, 66, 64–78. [Google Scholar] [CrossRef] - Kato, T.; Hino, H.; Murata, N. Doubly Sparse Structure in Image Super Resolution. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, MLSP, Vietri sul Mare, Italy, 13–16 September 2016; IEEE Computer Society: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Kato, T.; Hino, H.; Murata, N. Double Sparsity for Multi-Frame Super Resolution. Neurocomputing
**2017**, 240, 115–126. [Google Scholar] [CrossRef] - Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science
**2006**, 313, 504–507. [Google Scholar] [CrossRef] [Green Version] - Wang, H.; Rivenson, Y.; Jin, Y.; Wei, Z.; Gao, R.; Günaydın, H.; Bentolila, L.A.; Kural, C.; Ozcan, A. Deep Learning Enables Cross-Modality Super-Resolution in Fluorescence Microscopy. Nat. Methods
**2019**, 16, 103–110. [Google Scholar] [CrossRef] - Liu, T.; de Haan, K.; Rivenson, Y.; Wei, Z.; Zeng, X.; Zhang, Y.; Ozcan, A. Deep Learning-Based Super-Resolution in Coherent Imaging Systems. Sci. Rep.
**2019**, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ito, K. Efficient Bathymetry by Learning-Based Image Super Resolution. Fish. Eng.
**2019**, 56, 47–50. [Google Scholar] - Sonogashira, M.; Shonai, M.; Iiyama, M. High-Resolution Bathymetry by Deep-Learning-Based Image Superresolution. PLoS ONE
**2020**, 15, e0235487. [Google Scholar] [CrossRef] [PubMed] - Hidaka, M.; Matsuoka, D.; Kuwatani, T.; Kaneko, J.; Kasaya, T.; Kido, Y.; Ishikawa, Y.; Kikawa, E. Super-resolution for Ocean Bathymetric Maps Using Deep Learning Approaches: A Comparison and Validation. Geoinformatics
**2021**, 32, 3–13. [Google Scholar] [CrossRef] - Nock, K.; Bonanno, D.; Elmore, P.; Smith, L.; Ferrini, V.; Petry, F. Applying Single-Image Super-Resolution to Enhancment of Deep-Water Bathymetry. Heliyon
**2019**, 5, e02570. [Google Scholar] [CrossRef] - Belthangady, C.; Royer, L.A. Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction. Nat. Methods
**2019**, 16, 1215–1225. [Google Scholar] [CrossRef] - Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process.
**2006**, 54, 4311–4322. [Google Scholar] [CrossRef] - Moore, E.H. On the Reciprocal of the General Algebraic Matrix. Bull. Am. Math. Soc.
**1920**, 26, 394–395. [Google Scholar] - Penrose, R. A Generalized Inverse for Matrices. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1955; Volume 51, pp. 406–413. [Google Scholar] [CrossRef] [Green Version]
- Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. In Proceedings of the Conference Record of the Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 1–3 November 1993; IEEE: Piscataway, NJ, USA, 1993; Volume 1, pp. 40–44. [Google Scholar]
- Kasaya, T.; Machiyama, H.; Kitada, K.; Nakamura, K. Trial Exploration for Hydrothermal Activity Using Acoustic Measurements at the North Iheya Knoll. Geochem. J.
**2015**, 49, 597–602. [Google Scholar] [CrossRef] - Nakamura, K.; Kawagucci, S.; Kitada, K.; Kumagai, H.; Takai, K.; Okino, K. Water Column Imaging with Multibeam Echo-Sounding in the Mid-Okinawa Trough: Implications for Distribution of Deep-Sea Hydrothermal Vent Sites and the Cause of Acoustic Water Column Anomaly. Geochem. J.
**2015**, 49, 579–596. [Google Scholar] [CrossRef] [Green Version] - Ishibashi, J.I.; Ikegami, F.; Tsuji, T.; Urabe, T. Okinawa Trough: Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. In Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept; Springer: Tokyo, Japan, 2015; pp. 337–360. ISBN 9784431548652. [Google Scholar]
- Kasaya, T.; Kaneko, J.; Iwamoto, H. Observation and confirmation based on survey protocol for seafloor massive sulfide deposits using acoustic survey technique and self-potential surveys. BUTSURI-TANSA
**2020**, 73, 42–52. [Google Scholar] [CrossRef] - McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv preprint
**2018**, arXiv:1802.03426. [Google Scholar] - Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]

**Figure 1.**Flowchart of the outline of ScSR. HR and LR indicate high-resolution and low-resolution, respectively.

**Figure 2.**Detailed flowchart of ScSR. It consists of two processes: dictionary learning and reconstruction by sparse coding.

**Figure 3.**Map of the area used in this study. (

**a**) The Japanese Islands (top left) and the sea around Okinawa; (

**b**) Topographical map in the red box in (

**a**). The area is equally divided into eight squares. The ridge in the area 0_2 is the Iheya–Minor Ridge.

**Figure 5.**Seabed topography in area 0_2. (

**a**) The original image; (

**b**) Low-resolution input image; (

**c**) Sparse coding super-resolution (ScSR: the proposed method); (

**d**) Bicubic interpolation.

**Figure 6.**Residual images between the super-resolution images and original image of the area 0_2. (

**a**) ScSR (RMSE: 1.157 m); (

**b**) Bicubic interpolation (RMSE: 1.713 m). The same colour scale is used in both images.

**Figure 7.**(

**a**) Visualisation of 256 bases from the “0_0” dictionary as embedded by UMAP. (

**b**) Distribution of clusters of bases on the embedded space by UMAP. The colour shading of the symbols on (

**b**) corresponds to the sum of the absolute values of the coefficients of each basis in the reconstruction. “c1” represents “cluster 1”, and the same applies to “c2” and beyond.

**Figure 8.**Distribution of clusters 8 and 14 based on the clustering (Figure 7) in the reconstructed area. The small figure to the top left of the coloured maps shows the representative basis within the cluster, that is, the one with the sum of the absolute values of the coefficients throughout the reconstruction is the largest in each cluster. The left figure shows the original image of the reconstructed area. The geological edifices in the green and yellow circles are the small sea knolls. See text for details.

**Figure 9.**Distribution of the 23 clusters in the reconstructed area. The small figure to the left of each map shows the representative basis of the cluster. The scale of the colour bar is identical to that shown in Figure 8.

**Table 1.**RMSEs for eight regions reconstructed using the dictionaries learned in the other seven other sea areas, the RMSEs for bicubic interpolation, and their ratio. The unit of RMSE is metre in this table.

Reconstruct Area | 0_0 | 0_1 | 0_2 | 0_3 | 1_0 | 1_1 | 1_2 | 1_3 | Mean |
---|---|---|---|---|---|---|---|---|---|

ScSR | 0.803 | 1.183 | 1.156 | 1.853 | 1.193 | 1.259 | 1.414 | 1.723 | 1.323 |

bicubic | 1.066 | 1.458 | 1.713 | 2.501 | 1.794 | 1.789 | 2.293 | 2.524 | 1.892 |

ScSR/bicubic | 0.753 | 0.812 | 0.675 | 0.741 | 0.665 | 0.703 | 0.617 | 0.682 | 0.709 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yutani, T.; Yono, O.; Kuwatani, T.; Matsuoka, D.; Kaneko, J.; Hidaka, M.; Kasaya, T.; Kido, Y.; Ishikawa, Y.; Ueki, T.;
et al. Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding. *Sensors* **2022**, *22*, 3198.
https://doi.org/10.3390/s22093198

**AMA Style**

Yutani T, Yono O, Kuwatani T, Matsuoka D, Kaneko J, Hidaka M, Kasaya T, Kido Y, Ishikawa Y, Ueki T,
et al. Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding. *Sensors*. 2022; 22(9):3198.
https://doi.org/10.3390/s22093198

**Chicago/Turabian Style**

Yutani, Taku, Oak Yono, Tatsu Kuwatani, Daisuke Matsuoka, Junji Kaneko, Mitsuko Hidaka, Takafumi Kasaya, Yukari Kido, Yoichi Ishikawa, Toshiaki Ueki,
and et al. 2022. "Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding" *Sensors* 22, no. 9: 3198.
https://doi.org/10.3390/s22093198