Cost-Effective Bull’s Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation
Abstract
:1. Introduction
2. Structure Design and Materials
3. Spectral Responses
4. Electromagnetic Field Distributions Discussion
5. Studying the Absorption Peak Characteristics
6. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Ma, C.; Yan, J.; Huang, Y.; Wang, C.; Yang, G. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 2018, 4, eaas9894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Gan, R.; Guo, Q.; Liu, H.; Xu, J.; Yi, F. Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons. Opt. Express 2018, 26, 16769–16781. [Google Scholar] [CrossRef] [PubMed]
- Vafapour, Z.; Ghahraloud, H.; Keshavarz, A.; Islam, M.S.; Rashidi, A.; Dutta, M.; Stroscio, M.A. The potential of Refractive Index Nanobiosensing using a Multi-band Optically Tuned Perfect Light Metamaterial Absorber. IEEE Sens. J. 2021, 21, 13786–13793. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, Y.; Gao, S.; Yang, J.; Lai, W.; Li, Z.; Deng, G. Optically transparent and single-band metamaterial absorber based on indium-tin-oxide. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21536. [Google Scholar] [CrossRef]
- Cong, L.; Tan, S.; Yahiaoui, R.; Yan, F.; Zhang, W.; Singh, R. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Appl. Phys. Lett. 2015, 106, 031107. [Google Scholar] [CrossRef]
- Vafapour, Z.; Zakery, A. New regime of plasmonically induced transparency. Plasmonics 2015, 10, 1809–1815. [Google Scholar] [CrossRef]
- Yan, D.; Li, J. Tunable all-graphene-dielectric single-band terahertz wave absorber. J. Phys. D Appl. Phys. 2019, 52, 275102. [Google Scholar] [CrossRef]
- Tillman, K.A.; Maier, R.R.J.; Reid, D.T.; McNaghten, E.D. Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator. Appl. Phys. Lett. 2004, 85, 3366–3368. [Google Scholar] [CrossRef]
- Hägglund, C.; Zeltzer, G.; Ruiz, R.; Wangperawong, A.; Roelofs, K.E.; Bent, S.F. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics. ACS Photonics 2016, 3, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Kenney, M.; Grant, J.; Shah, Y.D.; Escorcia-Carranza, I.; Humphreys, M.; Cumming, D.R. Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers. ACS Photonics 2017, 4, 2604–2612. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Chen, F.; Luo, H.; Li, X. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 2021, 402, 127345. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Z.; Cheng, Z. Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt. Mater. 2021, 117, 111129. [Google Scholar] [CrossRef]
- Jadeja, R.; Charola, S.; Patel, S.K.; Parmar, J.; Ladumor, M.; Nguyen, T.K.; Dhasarathan, V. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J. Mater. Sci. 2020, 55, 3462–3469. [Google Scholar] [CrossRef]
- Tran, M.C.; Pham, V.H.; Ho, T.H.; Nguyen, T.T.; Do, H.T.; Bui, X.K.; Bui, S.T.; Le, D.T.; Pham, T.L.; Vu, D.L. Broadband microwave coding metamaterial absorbers. Sci. Rep. 2020, 10, 1810. [Google Scholar] [CrossRef]
- Vafapour, Z. Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance. J. Opt. Soc. Am. A 2018, 35, 417–422. [Google Scholar] [CrossRef]
- Bilal, R.M.H.; Baqir, M.A.; Choudhury, P.K.; Karaaslan, M.; Ali, M.M.; Altłntas, O.; Rahim, A.A.; Unal, E.; Sabah, C. Wideband Microwave Absorber Comprising Metallic Split-Ring Resonators Surrounded With E-Shaped Fractal Metamaterial. IEEE Access 2021, 9, 5670–5677. [Google Scholar] [CrossRef]
- Rana, A.S.; Mehmood, M.Q.; Jeong, H.; Kim, I.; Rho, J. Tungsten-based ultrathin absorber for visible regime. Sci. Rep. 2018, 8, 2443. [Google Scholar] [CrossRef]
- Bilal, R.M.H.; Saeed, M.A.; Choudhury, P.K.; Baqir, M.A.; Kamal, W.; Ali, M.M.; Rahim, A.A. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci. Rep. 2020, 10, 14035. [Google Scholar] [CrossRef]
- Luo, M.; Shen, S.; Zhou, L.; Wu, S.; Zhou, Y.; Chen, L. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt. Express 2017, 25, 16715–16724. [Google Scholar] [CrossRef]
- Li, H.; Yuan, L.H.; Zhou, B.; Shen, X.P.; Cheng, Q.; Cui, T.J. Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 2011, 110, 014909. [Google Scholar] [CrossRef]
- Gunduz, O.T.; Sabah, C. Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comput. Electron. 2016, 15, 228–238. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, Y.; Zhang, T.; Zhang, Y.; Liu, W.; Wang, L.; Ding, J.; Wang, X.; Yi, Z. Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross. Results Phys. 2021, 25, 104233. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Y.; Cui, Z.; Zhang, X.; Zhu, Y.; Zhang, X.; Chen, S.; Wang, X.; Zhang, K. Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt. Express 2021, 29, 13563–13575. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Lin, L.; Chen, Z.; Abdalla, A.; Nie, P. A terahertz multi-band metamaterial absorber and its synthetic evaluation method based on multivariate resonant response fusion for trace pesticide detection. Sens. Actuators B Chem. 2021, 336, 129726. [Google Scholar] [CrossRef]
- Wang, B.X.; He, Y.; Lou, P.; Zhu, H. Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Adv. 2021, 3, 455–462. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Luo, X.; Maier, S.A.; Hong, M. Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res. 2015, 3, 54–57. [Google Scholar] [CrossRef]
- Vafapour, Z. Polarization-independent perfect optical metamaterial absorber as a glucose sensor in Food Industry applications. IEEE Trans. Nanobiosci. 2019, 18, 622–627. [Google Scholar] [CrossRef]
- Hossain, I.; Samsuzzaman, M.; Moniruzzaman, M.; Bais, B.B.; Singh, M.S.J.; Islam, M.T. Polarization-Independent Broadband Optical Regime Metamaterial Absorber for Solar Harvesting: A Numerical Approach. Chin. J. Phys. 2021, 71, 699–715. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.; Chen, J.; Xie, N.; Tang, H.; Zhu, X.; Park, G.S. Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res. Lett. 2018, 13, 153. [Google Scholar] [CrossRef] [Green Version]
- Mostaan, S.M.A.; Saghaei, H. A tunable broadband graphene-based metamaterial absorber in the far-infrared region. Opt. Quantum Electron. 2021, 53, 96. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, Y. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime. Opt. Express 2017, 25, 19185–19194. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Tao, K. Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies. Appl. Phys. Express 2015, 8, 102001. [Google Scholar] [CrossRef]
- Mulla, B.; Sabah, C. Multi-band metamaterial absorber topology for infrared frequency regime. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 86, 44–51. [Google Scholar] [CrossRef]
- Vafapour, Z.; Alaei, H. Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials. Plasmonics 2017, 12, 1343–1352. [Google Scholar] [CrossRef]
- Patel, S.K.; Sorathiya, V.; Sbeah, Z.; Lavadiya, S.; Nguyen, T.K.; Dhasarathan, V. Graphene-based tunable infrared multi band absorber. Opt. Commun. 2020, 474, 126109. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Abbott, D. Metamaterials in the terahertz regime. IEEE Photonics J. 2009, 1, 99–118. [Google Scholar] [CrossRef]
- Vafapour, Z.; Dutta, M.; Stroscio, M.A. Sensing, Switching and Modulating applications of a Superconducting THz Metamaterial. IEEE Sens. J. 2021, 21, 15187–15195. [Google Scholar] [CrossRef]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Lee, S.; Baek, S.; Kim, T.T.; Cho, H.; Lee, S.; Kang, J.H.; Min, B. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater. 2020, 32, 2000250. [Google Scholar] [CrossRef]
- Pitchappa, P.; Kumar, A.; Singh, R.; Lee, C.; Wang, N. Terahertz MEMS metadevices. J. Micromech. Microeng. 2021, 31, 113001. [Google Scholar] [CrossRef]
- Lou, J.; Liang, J.; Yu, Y.; Ma, H.; Yang, R.; Fan, Y.; Wang, G.; Cai, T. Silicon-based terahertz meta-devices for electrical modulation of Fano resonance and transmission amplitude. Adv. Opt. Mater. 2020, 8, 2000449. [Google Scholar] [CrossRef]
- Li, Y.; Lv, J.; Gu, Q.; Hu, S.; Li, Z.; Jiang, X.; Ying, Y.; Si, G. Metadevices with Potential Practical Applications. Molecules 2019, 24, 2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrekenhamer, D.; Watts, C.M.; Montoya, J.; Krishna, S.; Padilla, W.J. Metamaterial-based imaging for potential security applications. In Photonic and Phononic Properties of Engineered Nanostructures III; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; Volume 8632, p. 863221. [Google Scholar]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266. [Google Scholar] [CrossRef]
- Kemp, M.C.; Taday, P.F.; Cole, B.E.; Cluff, J.A.; Fitzgerald, A.J.; Tribe, W.R. Security applications of terahertz technology. In Terahertz for Military and Security Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5070, pp. 44–52. [Google Scholar]
- Pickwell, E.; Wallace, V.P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301. [Google Scholar] [CrossRef]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345. [Google Scholar] [CrossRef] [Green Version]
- Vafapour, Z.; Keshavarz, A.; Ghahraloud, H. The potential of terahertz sensing for cancer diagnosis. Heliyon 2020, 6, e05623. [Google Scholar] [CrossRef]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz pulsed imaging in biomedical applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Zaytsev, K.I.; Kurlov, V.N.; Skorobogatiy, M.; Reshetov, I.V.; Tuchin, V.V. Special Section Guest Editorial: Advances in Terahertz Biomedical Science and Applications. J. Biomed. Opt. 2021, 26, 043001. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, Y.; Gu, P.; Feng, S.; Zhu, Y.; Tang, C.; Guo, Y.; Liu, Z.; Gao, F. Strong magnetic plasmon resonance in a simple metasurface for high-quality sensing. J. Lightwave Technol. 2021, 39, 4525–4528. [Google Scholar] [CrossRef]
- Ji, Y.; Tang, C.; Xie, N.; Chen, J.; Gu, P.; Peng, C.; Liu, B. High-performance metamaterial sensors based on strong coupling between surface plasmon polaritons and magnetic plasmon resonances. Results Phys. 2019, 14, 102397. [Google Scholar] [CrossRef]
- Chen, J.; Peng, C.; Qi, S.; Zhang, Q.; Tang, C.; Shen, X.; Da, H.; Wang, L.; Park, G.S. Photonic microcavity-enhanced magnetic plasmon resonance of metamaterials for sensing applications. IEEE Photonics Technol. Lett. 2018, 31, 113–116. [Google Scholar] [CrossRef]
- Chen, J.; Fan, W.; Zhang, T.; Tang, C.; Chen, X.; Wu, J.; Li, D.; Yu, Y. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt. Express 2017, 25, 3675–3681. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, P.; Wang, W.; Zhang, X.; Kuo, H.C.; Xu, H.; Wang, Z.M. High-Q Plasmonic Resonances: Fundamentals and Applications. Adv. Opt. Mater. 2021, 9, 2001520. [Google Scholar] [CrossRef]
- Jeong, W.J.; Bu, J.; Jafari, R.; Rehak, P.; Kubiatowicz, L.J.; Drelich, A.J.; Owen, R.H.; Nair, A.; Rawding, P.A.; Poellmann, M.J. Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. Adv. Sci. 2022, 9, 2103098. [Google Scholar] [CrossRef] [PubMed]
- Forouzeshfard, M.R.; Ghafari, S.; Vafapour, Z. Solute concentration sensing in two aqueous solution using an optical metamaterial sensor. J. Lumin. 2021, 230, 117734. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Althuwayb, A.A.; Aïssa, S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THz integrated-circuit applications. J. Infrared Millim. Terahertz Waves 2021, 42, 17–28. [Google Scholar] [CrossRef]
- Vafapour, Z. Slow light modulator using semiconductor metamaterial. In Integrated Optics: Devices, Materials, and Technologies XXII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10535, p. 105352A. [Google Scholar] [CrossRef]
- Guo, T.; Chen, C.; Yan, F.; Wang, R.; Li, L. Controllable Terahertz Switch Using Toroidal Dipolar Mode of a Metamaterial. Plasmonics 2021, 16, 933–938. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhai, X.; Wang, G.Z.; Huang, W.Q.; Wang, L.L. Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 2014, 7, 4600108. [Google Scholar] [CrossRef]
- Mahboub, O.; Palacios, S.C.; Genet, C.; Garcia-Vidal, F.J.; Rodrigo, S.G.; Martin-Moreno, L.; Ebbesen, T.W. Optimization of bull’s eye structures for transmission enhancement. Opt. Express 2010, 18, 11292–11299. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Oda, S.; Kawano, Y. Split-joint bull’s eye structure with aperture optimization for multi-frequency terahertz plasmonic antennas. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Vafapour, Z. Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications. Appl. Opt. 2018, 57, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Nesher, O.; Elkind, S.; Adin, A.; Nevo, I.; Yaakov, A.B.; Raichshtain, S.; Marhasev, A.B.; Magner, A.; Katz, M.; Markovitz, T. Digital cooled InSb detector for IR detection. In Infrared Technology and Applications XXIX; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5074, pp. 120–129. [Google Scholar]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Zhu, J.; Han, J.; Tian, Z.; Gu, J.; Chen, Z.; Zhang, W. Thermal broadband tunable terahertz metamaterials. Opt. Commun. 2011, 284, 3129–3133. [Google Scholar] [CrossRef]
- Vafapour, Z.; Troy, W.; Rashidi, A. Colon Cancer Detection by Designing and Analytical Evaluation of a Water-based THz Metamaterial Perfect Absorber. IEEE Sens. J. 2021, 21, 19307–19313. [Google Scholar] [CrossRef]
- Yu, C.; Fan, S.; Sun, Y.; Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33. [Google Scholar]
- Zhang, C.; Liang, L.; Ding, L.; Jin, B.; Hou, Y.; Li, C.; Jiang, L.; Liu, W.; Hu, W.; Lu, Y. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Appl. Phys. Lett. 2016, 108, 241105. [Google Scholar] [CrossRef]
- Vafapour, Z.; Lari, E.S.; Forouzeshfar, M.R. Breast cancer detection capability of a tunable perfect semiconductor absorber: Analytical and numerical evaluation. Opt. Eng. 2021, 60, 107101. [Google Scholar] [CrossRef]
- Geetharamani, G.; Aathmanesan, T. Metamaterial inspired THz antenna for breast cancer detection. SN Appl. Sci. 2019, 1, 595. [Google Scholar] [CrossRef] [Green Version]
- Florous, N.J.; Saitoh, K.; Koshiba, M. Thermo-optical sensitivity analysis in photonic crystal circuits based on semiconducting or metallic metamaterial constituents. Opt. Lett. 2006, 31, 404–406. [Google Scholar] [CrossRef]
- Chang, K.M.; Luo, J.J.; Chiang, C.D.; Liu, K.C. Wet etching characterization of InSb for thermal imaging applications. Jpn. J. Appl. Phys. 2006, 45, 1477. [Google Scholar] [CrossRef]
- Han, L.; Tan, Q.; Li, H.; Xiong, J.; Zhang, W. Applications of chip-scale semiconductor metamaterials based on plasmon-induced transparency in modulation and sensing. J. Appl. Phys. 2021, 129, 133105. [Google Scholar] [CrossRef]
- Rivas, J.G.; Sánchez-Gil, J.A.; Kuttge, M.; Bolivar, P.H.; Kurz, H. Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces. Phys. Rev. B 2006, 74, 245324. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kanyang, R.; Han, G.; Fang, C.; Zhang, J.; Hao, Y.; Shao, Y. Rainbow Trapping and Releasing in InSb Graded Grating Strip at the Terahert: Range. In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, 21–24 July 2018; pp. 1–3. [Google Scholar]
- Chochol, J.; Postava, K.; Čada, M.; Vanwolleghem, M.; Halagačka, L.; Lampin, J.F.; Pištora, J. Magneto-optical properties of InSb for terahertz applications. AIP Adv. 2016, 6, 115021. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Stephen, D.G. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 2011, 6, 1–250. [Google Scholar] [CrossRef]
- Razmjooei, N.; Ko, Y.H.; Simlan, F.A.; Magnusson, R. Resonant reflection by microsphere arrays with AR-quenched Mie scattering. Opt. Express 2021, 29, 19183–19192. [Google Scholar] [CrossRef]
- Vafapour, Z.; Forouzeshfard, M.R. Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials. Plasmonics 2017, 12, 1331–1342. [Google Scholar] [CrossRef]
- Qi, L.; Li, C. Multi-band terahertz filter with independence to polarization and insensitivity to incidence angles. J. Infrared Millim. Terahertz Waves 2015, 36, 1137–1144. [Google Scholar] [CrossRef]
- Kovačević, A.; Potrebić, M.; Tošić, D. Sensitivity Characterization of Multi-Band THz Metamaterial Sensor for Possible Virus Detection. Electronics 2022, 11, 699. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, S.; Wang, S.; Meng, Y.; Zhai, X.; Xia, S.X.; Wang, L.L. Ultra-high sensitivity terahertz sensor based on a five-band absorber. J. Opt. 2022, 24, 055102. [Google Scholar] [CrossRef]
Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value (µm) | 8 | 5 | 20 | 2 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vafapour, Z. Cost-Effective Bull’s Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. Sensors 2022, 22, 2892. https://doi.org/10.3390/s22082892
Vafapour Z. Cost-Effective Bull’s Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. Sensors. 2022; 22(8):2892. https://doi.org/10.3390/s22082892
Chicago/Turabian StyleVafapour, Zohreh. 2022. "Cost-Effective Bull’s Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation" Sensors 22, no. 8: 2892. https://doi.org/10.3390/s22082892
APA StyleVafapour, Z. (2022). Cost-Effective Bull’s Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. Sensors, 22(8), 2892. https://doi.org/10.3390/s22082892