Hierarchical Human-Inspired Control Strategies for Prosthetic Hands
Abstract
:1. Introduction
2. Aim of the Study
3. Methods
- 1.
- A control strategy for prosthetic hands that mimics the human hand behavior;
- 2.
- A control strategy with complete management of the different phases of the grasp;
- 3.
- A control strategy with multiple-layers o hierarchical structure;
- 4.
- Be a full-length publication in a peer-reviewed journal or conference proceedings.
4. The Beginning of Control Laws for Prosthetic Hands
5. Human Hand Functioning
5.1. Tactile Sensory Mechanisms
5.2. Grasp Stability
5.3. Link between Brain Organization and Prosthesis Control Levels
- object recognition;
- object properties transformed into coordinates for the hand pre-shaping;
- object reaching;
- touch recognition with the object and slippage detection;
- evaluation of the forces to be applied during grasping and reactions to slippage events.
6. Control Strategies for Hand Prostheses
- 1.
- Creation of a small number of geometric primitives to represent target objects with arbitrary shapes.
- 2.
- Pre-shaping and alignment of the hand to select the appropriate primitive (AIP, IPL, F5, and PMv in the human brain, Section 5).
- 3.
- Reduction of hand configurations to a limited number of standard configurations for grasping tasks.
- 4.
- Separation of the grasping in target approach phase and shape adaptation phase, with reflex control application (Section 5).
7. Discussion
- A reach phase where the subject can voluntarily control the fingers during the object approach is missing (Section 5);
- Without a reaching phase, predetermined configurations are necessary for the pre-shaping phase not usable with a great number of objects (or shapes) [126];
- Except for the SAMS, in the other approaches the increase of the force during the automatic control is not possible;
- The force reference is obtained based on tests performed for one or a few levels of objects weights and they cannot be changed.
- A coordination strategy among the fingers to ensure the grasp stability is missing.
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ogle, W. Aristotle: On the Parts of Animals; K. Paul, French & Company: Tokyo, Japan, 1882. [Google Scholar]
- Bell, C. The Hand: Its Mechanism and Vital Endowments, as Evincing Design; Bell & Daldy: London, UK, 1865; Volume 4. [Google Scholar]
- Jones, F.W. The Principles of Anatomy: As Seen in the Hand; Bailliere, Tindall & Cox: Paris, France, 1944. [Google Scholar]
- Napier, J.R. Studies of the hands of living primates. In Proceedings of the Zoological Society of London; Wiley Online Library: Hoboken, NJ, USA, 1960; Volume 134, pp. 647–657. [Google Scholar]
- Lemelin, P.; Schmitt, D. On primitiveness, prehensility, and opposability of the primate hand: The contributions of Frederic Wood Jones and John Russell Napier. In The Evolution of the Primate Hand; Springer: Berlin/Heidelberg, Germany, 2016; pp. 5–13. [Google Scholar]
- Hernigou, P. Ambroise Paré IV: The early history of artificial limbs (from robotic to prostheses). Int. Orthop. 2013, 37, 1195–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellerson, T.L. Historical development of upper extremity prosthetics. Orthop. Prosthet. Appl. J. 1957, 11, 73–77. [Google Scholar]
- Bostock, J.; Riley, H.T. The Natural History of Pliny; G. Bell: London UK, 1900; Volume 2. [Google Scholar]
- Schlesinger, G. Der mechanische aufbau der künstlichen glieder. In Ersatzglieder und Arbeitshilfen; Springer: Berlin/Heidelberg, Germany, 1919; pp. 321–661. [Google Scholar]
- Reiter, R. Eine neue Electro Kunsthand. Grenzgeb. Med. 1948, 4, 133–135. [Google Scholar]
- Scott, R.N. Myoelectric control of prostheses: A brief history. In Proceedings of the 1992 MyoElectric Controls/Powered Prosthetics Symposium, Fredericton, NB, Canada, 1 August 1992; Volume 1. [Google Scholar]
- Zecca, M.; Micera, S.; Carrozza, M.C.; Dario, P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 2002, 30, 459–485. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.N.; Parker, P.A. Myoelectric prostheses: State of the art. J. Med Eng. Technol. 1988, 12, 143–151. [Google Scholar] [CrossRef]
- Popov, B. The bio-electrically controlled prosthesis. J. Bone Jt. Surgery. Br. Vol. 1965, 47, 421–424. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control. 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Saridis, G.N.; Gootee, T.P. EMG pattern analysis and classification for a prosthetic arm. IEEE Trans. Biomed. Eng. 1982, 46, 403–412. [Google Scholar] [CrossRef]
- Christodoulou, C.I.; Pattichis, C.S. Unsupervised pattern recognition for the classification of EMG signals. IEEE Trans. Biomed. Eng. 1999, 46, 169–178. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.P. EMG pattern recognition based on artificial intelligence techniques. IEEE Trans. Rehabil. Eng. 1998, 6, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, A.L.; Cordella, F.; Barone, R.; Romeo, R.A.; Dellacasa Bellingegni, A.; Sacchetti, R.; Davalli, A.; Di Pino, G.; Ranieri, F.; Di Lazzaro, V.; et al. Control of prosthetic hands via the peripheral nervous system. Front. Neurosci. 2016, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, M.; Schweisfurth, M.A.; Engels, L.F.; Farina, D.; Dosen, S. Myocontrol is closed-loop control: Incidental feedback is sufficient for scaling the prosthesis force in routine grasping. J. Neuroeng. Rehabil. 2018, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Zaccone, F.; Micera, S.; Carrozza, M.C. On the shared control of an EMG-controlled prosthetic hand: Analysis of user—Prosthesis interaction. IEEE Trans. Robot. 2008, 24, 170–184. [Google Scholar] [CrossRef]
- Biddiss, E.; Chau, T. Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 2007, 86, 977–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Resnik, L.; Borgia, M. Reliability, validity, and responsiveness of the QuickDASH in patients with upper limb amputation. Arch. Phys. Med. Rehabil. 2015, 96, 1676–1683. [Google Scholar] [CrossRef]
- Scotland, T.; Galway, H. A long-term review of children with congenital and acquired upper limb deficiency. J. Bone Jt. Surgery. Br. Vol. 1983, 65, 346–349. [Google Scholar] [CrossRef]
- Berke, G.M.; Nielsen, C. Establishing parameters affecting the use of myoelectric prostheses in children: A preliminary investigation. J. Prosthet. Orthot. 1991, 3, 162–167. [Google Scholar] [CrossRef]
- Roeschlein, R.A.; Domholdt, E. Factors related to successful upper extremity prosthetic use. Prosthetics Orthot. Int. 1989, 13, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Biddiss, E.; Chau, T. The roles of predisposing characteristics, established need, and enabling resources on upper extremity prosthesis use and abandonment. Disabil. Rehabil. Assist. Technol. 2007, 2, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Riener, R. The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. Neuroeng. Rehabil. 2016, 13, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Kyberd, P.J.; Wartenberg, C.; Sandsjö, L.; Jönsson, S.; Gow, D.; Frid, J.; Almström, C.; Sperling, L. Survey of upper-extremity prosthesis users in Sweden and the United Kingdom. Jpo J. Prosthetics Orthot. 2007, 19, 55–62. [Google Scholar] [CrossRef]
- Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013, 50, 599–618. [Google Scholar] [CrossRef]
- Rodriguez-Cheu, L.E.; Casals, A. Sensing and control of a prosthetic hand with myoelectric feedback. In Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, BioRob 2006, Pisa, Italy, 20–22 February 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 607–612. [Google Scholar]
- Huang, H.P.; Liu, Y.H.; Lee, W.C.; Kuan, J.Y.; Huang, T.H. Rehabilitation robotic prostheses for upper extremity. Contemp. Issues Syst. Sci. Eng. 2015, 661–697. [Google Scholar] [CrossRef]
- Naidu, D.S.; Chen, C.H.; Perez, A.; Schoen, M.P. Control strategies for smart prosthetic hand technology: An overview. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–24 August 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 4314–4317. [Google Scholar]
- Ernst, H.A. MH-1, a computer-operated mechanical hand. In Proceedings of the Spring Joint Computer Conference, San Francisco, CA, USA, 1–3 May 1962; ACM: New York, NY, USA, 1962; pp. 39–51. [Google Scholar]
- Tomovic, R.; Boni, G. An adaptive artificial hand. Ire Trans. Autom. Control. 1962, 7, 3–10. [Google Scholar] [CrossRef]
- Yamashita, T. Engineering approaches to function of fingers. Rep. Inst. Ind. Sci. Univ. Tokyo 1963, 13, 60–110. [Google Scholar]
- Michelman, P. Precision object manipulation with a multifingered robot hand. IEEE Trans. Robot. Autom. 1998, 14, 105–113. [Google Scholar] [CrossRef]
- van Duinen, H.; Gandevia, S.C. Constraints for control of the human hand. J. Physiol. 2011, 589, 5583–5593. [Google Scholar] [CrossRef]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, R.; Tahara, K. Grasp and dexterous manipulation of multi-fingered robotic hands: A review from a control view point. Adv. Robot. 2017, 31, 1030–1050. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.L.; Pollard, N.S. Data-driven grasp synthesis using shape matching and task-based pruning. IEEE Trans. Vis. Comput. Graph. 2007, 13, 732–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordella, F.; Zollo, L.; Salerno, A.; Accoto, D.; Guglielmelli, E.; Siciliano, B. Human hand motion analysis and synthesis of optimal power grasps for a robotic hand. Int. J. Adv. Robot. Syst. 2014, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Dafotakis, M.; Sparing, R.; Eickhoff, S.B.; Fink, G.R.; Nowak, D.A. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Brain Res. 2008, 1228, 73–80. [Google Scholar] [CrossRef]
- Prabhu, G.; Voss, M.; Brochier, T.; Cattaneo, L.; Haggard, P.; Lemon, R. Excitability of human motor cortex inputs prior to grasp. J. Physiol. 2007, 581, 189–201. [Google Scholar] [CrossRef]
- Loh, M.N.; Kirsch, L.; Rothwell, J.C.; Lemon, R.N.; Davare, M. Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex. J. Neurosci. 2010, 30, 6984–6990. [Google Scholar] [CrossRef] [Green Version]
- Valero-Cuevas, F.J.; Santello, M. On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 2017, 14, 101. [Google Scholar] [CrossRef]
- Fox, P.T.; Raichle, M.E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 1986, 83, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Bandettini, P.A.; Jesmanowicz, A.; Wong, E.C.; Hyde, J.S. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 1993, 30, 161–173. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412, 150. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Walsh, V.; Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience—Virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 2000, 10, 232–237. [Google Scholar] [CrossRef]
- Culham, J.C.; Cavina-Pratesi, C.; Singhal, A. The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia 2006, 44, 2668–2684. [Google Scholar] [CrossRef]
- Castiello, U. The neuroscience of grasping. Nat. Rev. Neurosci. 2005, 6, 726. [Google Scholar] [CrossRef] [PubMed]
- Kroliczak, G.; McAdam, T.D.; Quinlan, D.J.; Culham, J.C. The human dorsal stream adapts to real actions and 3D shape processing: A functional magnetic resonance imaging study. J. Neurophysiol. 2008, 100, 2627–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grefkes, C.; Fink, G.R. The functional organization of the intraparietal sulcus in humans and monkeys. J. Anat. 2005, 207, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Tunik, E.; Rice, N.J.; Hamilton, A.; Grafton, S.T. Beyond grasping: Representation of action in human anterior intraparietal sulcus. Neuroimage 2007, 36, T77–T86. [Google Scholar] [CrossRef] [Green Version]
- Savelsbergh, G.J.P.; Steenbergen, B.; Van der Kamp, J. The role of fragility information in the guidance of the precision grip. Hum. Mov. Sci. 1996, 15, 115–127. [Google Scholar] [CrossRef]
- Bootsma, R.J.; Marteniuk, R.G.; MacKenzie, C.L.; Zaal, F.T.J.M. The speed-accuracy trade-off in manual prehension: Effects of movement amplitude, object size and object width on kinematic characteristics. Exp. Brain Res. 1994, 98, 535–541. [Google Scholar] [CrossRef]
- Weir, P.L.; MacKenzie, C.L.; Marteniuk, R.G.; Cargoe, S.L.; Frazer, M.B. The effects of object weight on the kinematics of prehension. J. Mot. Behav. 1991, 23, 192–204. [Google Scholar] [CrossRef]
- Weir, P.L.; MacKenzie, C.L.; Marteniuk, R.G.; Cargoe, S.L. Is Object Texture a Constraint on Human Prehension: Kinematic Evidence. J. Mot. Behav. 1991, 23, 205–210. [Google Scholar] [CrossRef]
- Johansson, R.S.; Westling, G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp. Brain Res. 1988, 71, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.M.; Forssberg, H.; Johansson, R.S.; Westling, G. Visual size cues in the programming of manipulative forces during precision grip. Exp. Brain Res. 1991, 83, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ansuini, C.; Santello, M.; Massaccesi, S.; Castiello, U. Effects of end-goal on hand shaping. J. Neurophysiol. 2006, 95, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Ansuini, C.; Giosa, L.; Turella, L.; Altoè, G.; Castiello, U. An object for an action, the same object for other actions: Effects on hand shaping. Exp. Brain Res. 2008, 185, 111–119. [Google Scholar] [CrossRef]
- Cohen, R.G.; Rosenbaum, D.A. Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Exp. Brain Res. 2004, 157, 486–495. [Google Scholar] [CrossRef]
- Armbrüster, C.; Spijkers, W. Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Mot. Control. 2006, 10, 311–329. [Google Scholar] [CrossRef]
- Moore, K.L.; Dalley, A.F.; Agur, A.M.R. Clinically Oriented Anatomy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Baumann, M.A.; Fluet, M.C.; Scherberger, H. Context-specific grasp movement representation in the macaque anterior intraparietal area. J. Neurosci. 2009, 29, 6436–6448. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Camarda, R.; Fogassi, L.; Gentilucci, M.; Luppino, G.; Matelli, M. Functional organization of inferior area 6 in the macaque monkey. Exp. Brain Res. 1988, 71, 491–507. [Google Scholar] [CrossRef]
- Fluet, M.C.; Baumann, M.A.; Scherberger, H. Context-specific grasp movement representation in macaque ventral premotor cortex. J. Neurosci. 2010, 30, 15175–15184. [Google Scholar] [CrossRef]
- Castiello, U.; Begliomini, C. The cortical control of visually guided grasping. Neuroscientist 2008, 14, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Breveglieri, R.; Chinellato, E.; Galletti, C.; Fattori, P. Reaching activity in the medial posterior parietal cortex of monkeys is modulated by visual feedback. J. Neurosci. 2010, 30, 14773–14785. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Ferraina, S.; Bianchi, L.; Caminiti, R. Cortical networks for visual reaching: Physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 1996, 6, 102–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminiti, R.; Johnson, P.B.; Galli, C.; Ferraina, S.; Burnod, Y. Making arm movements within different parts of space: The premotor and motor cortical representation of a coordinate system for reaching to visual targets. J. Neurosci. 1991, 11, 1182–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davare, M.; Kraskov, A.; Rothwell, J.C.; Lemon, R.N. Interactions between areas of the cortical grasping network. Curr. Opin. Neurobiol. 2011, 21, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Turella, L.; Lingnau, A. Neural correlates of grasping. Front. Hum. Neurosci. 2014, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Macuga, K.L.; Frey, S.H. Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage 2012, 59, 2798–2807. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Luppino, G. The cortical motor system. Neuron 2001, 31, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Filimon, F. Human cortical control of hand movements: Parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 2010, 16, 388–407. [Google Scholar] [CrossRef]
- Jonas, E.; Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Comput. Biol. 2017, 13, e1005268. [Google Scholar] [CrossRef] [Green Version]
- Quintero, D. Properties of Cutaneous Mechanoreceptors in the Human Hand-Related to Touch Sensation. Hum. Neurobiol. 1984, 3, 3–14. [Google Scholar]
- Macefield, V. The signalling of touch, finger movements and manipulation forces by mechanoreceptors in human skin. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1998; Volume 127, pp. 89–130. [Google Scholar]
- Johansson, R.S.; Flanagan, J.R. Tactile Sensory Control of Object Manipulation in Human, Volume Handbook of the Senses: Volume 5-Somatosensation; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Vallbo, Å. Touch, Sensory Coding of, in the Human Hand. In Sensory Systems: II; Springer: Berlin/Heidelberg, Germany, 1988; pp. 136–138. [Google Scholar]
- Johansson, R.S.; Landstro, U.; Lundstro, R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 1982, 244, 17–25. [Google Scholar] [CrossRef]
- Lo, J.; Johansson, R.S. Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Res. 1984, 301, 65–72. [Google Scholar]
- Johansson, R.S.; Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 1984, 56, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, A.W.; Jenmalm, P.; Johansson, R.S. Control of grip force when tilting objects: Effect of curvature of grasped surfaces and applied tangential torque. J. Neurosci. 1998, 18, 10724–10734. [Google Scholar] [CrossRef]
- Wing, A.M.; Lederman, S.J. Anticipatory load torques produced by voluntary movements. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 1571. [Google Scholar] [CrossRef] [PubMed]
- Johansson, R.S.; Backlin, J.L.; Burstedt, M.K.O. Control of grasp stability during pronation and supination movements. Exp. Brain Res. 1999, 128, 20–30. [Google Scholar] [CrossRef]
- Flanagan, J.R.; Wing, A.M. The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp. Brain Res. 1990, 105, 455–464. [Google Scholar] [CrossRef]
- Flanagan, J.R.; Tresilian, J.R. Grip-load force coupling: A general control strategy for transporting objects. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 944. [Google Scholar] [CrossRef]
- Johansson, R.S.; Westling, G. Programmed and triggered actions to rapid load changes during precision grip. Exp. Brain Res. 1988, 71, 72–86. [Google Scholar] [CrossRef]
- Witney, A.G.; Goodbody, S.J.; Wolpert, D.M. Predictive motor learning of temporal delays. J. Neurophysiol. 1999, 82, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, J.R.; Wing, A.M. The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 1997, 17, 1519–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, J.R.; Vetter, P.; Johansson, R.S.; Wolpert, D.M. Prediction precedes control in motor learning. Current Biology 2003, 13, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Cadoret, G.; Smith, A.M. Friction, not texture, dictates grip forces used during object manipulation. J. Neurophysiol. 1996, 75, 1963–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenmalm, P.; Johansson, R.S. Visual and somatosensory information about object shape control manipulative fingertip forces. J. Neurosci. 1997, 17, 4486–4499. [Google Scholar] [CrossRef] [PubMed]
- Jenmalm, P.; Dahlstedt, S.; Johansson, R.S. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J. Neurophysiol. 2000, 84, 2984–2997. [Google Scholar] [CrossRef] [PubMed]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, L.L.; Colman, A.B. A mechanical hand with automatic proportional control of prehension. Med Biol. Eng. 1967, 5, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Baits, J.C.; Todd, R.W.; Nightingale, J.M. Paper 10: The Feasibility of an Adaptive Control Scheme for Artificial Prehension. Proc. Inst. Mech. Eng. Conf. Proc. 1968, 183, 54–59. [Google Scholar] [CrossRef]
- Childress, D.S. Closed-loop control in prosthetic systems: Historical perspective. Ann. Biomed. Eng. 1980, 8, 293–303. [Google Scholar] [CrossRef]
- Codd, R.D.; Nightingale, J.M.; Todd, R.W. An adaptive multi-functional hand prosthesis. J. Physiol. 1973, 232, 55P. [Google Scholar] [PubMed]
- Nightingale, J.M. Microprocessor control of an artificial arm. J. Microcomput. Appl. 1985, 8, 167–173. [Google Scholar] [CrossRef]
- Chappell, P.H.; Kyberd, P.J. Prehensile control of a hand prosthesis by a microcontroller. J. Biomed. Eng. 1991, 13, 363–369. [Google Scholar] [CrossRef]
- Napier, J.R. The prehensile movements of the human hand. J. Bone Jt. Surgery. Br. Vol. 1956, 38, 902–913. [Google Scholar] [CrossRef] [Green Version]
- Kyberd, P.J.; Chappell, P.H. The Southampton Hand: An intelligent myoelectric prosthesis. J. Rehabil. Res. Dev. 1994, 31, 326. [Google Scholar]
- Nightingale, J.; Todd, R. An adaptively-controlled prosthetic hand. Eng. Med. 1971, 1, 3–6. [Google Scholar] [CrossRef]
- Tomovic, R.; Bekey, G.; Karplus, W. A strategy for grasp synthesis with multifingered robot hands. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; IEEE: Piscataway, NJ, USA, 1987; Volume 4, pp. 83–89. [Google Scholar]
- Tomovic, R. Control of assistive systems by external reflex arcs. In Advances in External Control of Human Extremities VIII; ETAN: Belgrade, Yugoslavia, 1984; pp. 7–21. [Google Scholar]
- Rakić, M. Paper 11: The ‘Belgrade Hand Prosthesis’. Proc. Inst. Mech. Eng. Conf. Proc. 1968, 183, 60–67. [Google Scholar]
- Cipriani, C.; Zaccone, F.; Stellin, G.; Beccai, L.; Cappiello, G.; Carrozza, M.C.; Dario, P. Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2111–2116. [Google Scholar]
- Cutkosky, M.R. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 1989, 5, 269–279. [Google Scholar] [CrossRef]
- Pasluosta, C.F.; Chiu, A.W.L. Evaluation of a neural network-based control strategy for a cost-effective externally-powered prosthesis. Assist. Technol. 2012, 24, 196–208. [Google Scholar] [CrossRef]
- Sollerman, C.; Ejeskär, A. Sollerman hand function test: A standardised method and its use in tetraplegic patients. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1995, 29, 167–176. [Google Scholar] [CrossRef]
- Quinayás, C.; Ruiz, A.; Torres, L.; Gaviria, C. Hierarchical-Architecture Oriented to Multi-task Planning for Prosthetic Hands Controlling. In Proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, Almeria, Spain, 3–7 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 157–166. [Google Scholar]
- Quinayás-Burgos, C.A.; López, C.A.G. Sistema de identificación de intención de movimiento para el control mioeléctrico de una prótesis de mano robótica. Ing. Univ. 2015, 19, 27–50. [Google Scholar] [CrossRef]
- Quinayás-Burgos, C.A.; Muñoz-Añasco, M.; Vivas-Albán, Ó.A.; Gaviria-López, C.A. Diseño y construcción de la prótesis robótica de mano UC-1. Ing. Univ. 2010, 14, 223–237. [Google Scholar]
- Iberall, T. The nature of human prehension: Three dextrous hands in one. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; IEEE: Piscataway, NJ, USA, 1987; Volume 4, pp. 396–401. [Google Scholar]
- Chappell, P.; Nightingale, J.; Kyberd, P.; Barkhordar, M. Control of a single degree of freedom artificial hand. J. Biomed. Eng. 1987, 9, 273–277. [Google Scholar] [CrossRef]
- Light, C.M.; Chappell, P.H.; Hudgins, B.; Engelhart, K. Intelligent multifunction myoelectric control of hand prostheses. J. Med. Eng. Technol. 2002, 26, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Duan, X.; Deng, H. Hybrid force-position fuzzy control for a prosthetic hand. In Proceedings of the International Conference on Intelligent Robotics and Applications, Busan, Korea, 25–28 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 415–426. [Google Scholar]
- Betti, S.; Castiello, U.; Begliomini, C. Reach-to-Grasp: A Multisensory Experience. Front. Psychol. 2021, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Muzumdar, A. Powered Upper Limb Prostheses: Control, Implementation and Clinical Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Noce, E.; Gentile, C.; Cordella, F.; Ciancio, A.; Piemonte, V.; Zollo, L. Grasp control of a prosthetic hand through peripheral neural signals. J. Physics Conf. Ser. Iop Publ. 2018, 1026, 012006. [Google Scholar] [CrossRef]
- Cordella, F.; Gentile, C.; Zollo, L.; Barone, R.; Sacchetti, R.; Davalli, A.; Siciliano, B.; Guglielmelli, E. A force-and-slippage control strategy for a poliarticulated prosthetic hand. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3524–3529. [Google Scholar]
- Gentile, C.; Cordella, F.; Rodrigues, C.R.; Zollo, L. Touch-and-slippage detection algorithm for prosthetic hands. Mechatronics 2020, 70, 102402. [Google Scholar] [CrossRef]
- McCloskey, D. Muscular and cutaneous mechanisms in the estimation of the weights of grasped objects. Neuropsychologia 1974, 12, 513–520. [Google Scholar] [CrossRef]
- Giachritsis, C.; Wright, R.; Wing, A. The contribution of proprioceptive and cutaneous cues in weight perception: Early evidence for maximum-likelihood integration. In Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Amsterdam, The Netherlands, 8–10 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 11–16. [Google Scholar]
- Kargov, A.; Pylatiuk, C.; Martin, J.; Schulz, S.; Döderlein, L. A comparison of the grip force distribution in natural hands and in prosthetic hands. Disabil. Rehabil. 2004, 26, 705–711. [Google Scholar] [CrossRef]
- Leone, F.; Gentile, C.; Ciancio, A.L.; Gruppioni, E.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. Simultaneous sEMG classification of wrist/hand gestures and forces. Front. Neurorobot. 2019, 13, 42. [Google Scholar] [CrossRef]
- Provenzale, A.; Cordella, F.; Zollo, L.; Davalli, A.; Sacchetti, R.; Guglielmelli, E. A grasp synthesis algorithm based on postural synergies for an anthropomorphic arm-hand robotic system. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 958–963. [Google Scholar]
- Laschi, C.; Dario, P.; Carrozza, M.C.; Guglielmelli, E.; Teti, G.; Taddeucci, D.; Leoni, F.; Massa, B.; Zecca, M.; Lazzarini, R. Grasping and Manipulation in Humanoid Robotics; Scuola Superiore Sant Anna: Pisa, Italy, 2000. [Google Scholar]
- Kent, B.A.; Karnati, N.; Engeberg, E.D. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects. J. Neuroeng. Rehabil. 2014, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.M. Biomedical Engineering in upper-limb prosthetics. In The Comprehensive Management of the Upper-Limb Amputee; Atkins, D.J., Meier, R.H., Eds.; Springer: New York, NY, USA, 1989; pp. 173–189. [Google Scholar]
- Carrozza, M.C.; Massa, B.; Micera, S.; Lazzarini, R.; Zecca, M.; Dario, P. The development of a novel prosthetic hand-ongoing research and preliminary results. IEEE/ASME Trans. Mechatron. 2002, 7, 108–114. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Holland, O.E.; Chappell, P.H.; Smith, S.; Tregidgo, R.; Bagwell, P.J.; Snaith, M. MARCUS: A two degree of freedom hand prosthesis with hierarchical grip control. IEEE Trans. Rehabil. Eng. 1995, 3, 70–76. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Gow, D.; Scott, H.; Griffiths, M.; Sperling, L.; Sandsjo, L.; Almstrom, C.; Wartenberg, C.; Jonsson, S. A comparison of upper limb prostheses users in Europe. In Proceedings of the 1999 MyoElectric Controls/Powered Prosthetics Symposium, Fredericton, NB, Canada, 25–27 August 1999. [Google Scholar]
- Woodward, R.B.; Hargrove, L.J. Adapting myoelectric control in real-time using a virtual environment. J. Neuroeng. Rehabil. 2019, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.; Danielmeier, C.; Frey, S.H. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J. Cogn. Neurosci. 2010, 22, 2594–2608. [Google Scholar] [CrossRef] [Green Version]
- Betti, S.; Zani, G.; Guerra, S.; Castiello, U.; Sartori, L. Reach-to-grasp movements: A multimodal techniques study. Front. Psychol. 2018, 9, 990. [Google Scholar] [CrossRef]
- Handjaras, G.; Bernardi, G.; Benuzzi, F.; Nichelli, P.F.; Pietrini, P.; Ricciardi, E. A topographical organization for action representation in the human brain. Hum. Brain Mapp. 2015, 36, 3832–3844. [Google Scholar] [CrossRef] [Green Version]
- Mereu, F.; Leone, F.; Gentile, C.; Cordella, F.; Gruppioni, E.; Zollo, L. Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review. Sensors 2021, 21, 1953. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Irwin, Z.T.; Henning, P.T.; Lueders, D.R.; Laidlaw, A.T.; Davis, A.J.; Nu, C.S.; Gates, D.H.; Gillespie, R.B.; et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 2020, 12, eaay2857. [Google Scholar] [CrossRef]
- Kumar, N.G.; Kung, T.A.; Cederna, P.S. Regenerative Peripheral Nerve Interfaces for Advanced Control of Upper Extremity Prosthetic Devices. Hand Clin. 2021, 37, 425–433. [Google Scholar] [CrossRef]
- Beck, M.M.; Spedden, M.E.; Dietz, M.J.; Karabanov, A.N.; Christensen, M.S.; Lundbye-Jensen, J. Cortical signatures of precision grip force control in children, adolescents and adults. Elife 2021, 10, e61018. [Google Scholar] [CrossRef]
- Leone, F.; Gentile, C.; Cordella, F.; Gruppioni, E.; Guglielmelli, E.; Zollo, L. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements. J. Neuroeng. Rehabil. 2022, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Matulevich, B.; Loeb, G.E.; Fishel, J.A. Utility of contact detection reflexes in prosthetic hand control. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4741–4746. [Google Scholar]
Time (s) | Rating | ||||
---|---|---|---|---|---|
Task | SAMS | Hook | Myo | SAMS | Myo |
Cutting | |||||
Fork LH Knife RH | 57 | 26 | - | 2 | 1 |
Fork RH Knife LH | 49 | 42 | - | 2 | 1 |
Change grip, Spear to scoop | 12 | 14 | - | 2 | 1 |
Open bottle and pour | |||||
Top LH Bottle RH | 26 | 29 | - | 3 | 1 |
Top RH Bottle LH | 11 | 12 | 12 | 3 | 1 |
Carry tray | 21 | 17 | 18 | 2 | 2 |
Cut slice of bread | |||||
Loaf LH Knife RH | 41 | 42 | - | 3 | 1 |
Loaf RH Knife LH | 17 | 26 | 17 | 3 | 2 |
Butter bread | |||||
Bread RH Knife LH | 16 | 19 | 20 | 2 | 1 |
Bread LH Knife RH | 36 | 31 | 29 | 3 | 2 |
Fasten belt | 32 | 29 | 31 | 3 | 2 |
Toothpaste onto brush | |||||
Brush LH Tube RH | 36 | 21 | 20 | 3 | 2 |
Brush RH Tube LH | 42 | - | 15 | 3 | 2 |
Grasp telephone receiver | 19 | 5 | 5 | 3 | 2 |
Grasp pen and write | 30 | 20 | 22 | 2 | 2 |
Cigarette from pack | |||||
Pack LH Cig RH | 28 | 20 | 44 | 2 | 2 |
Pack RH Cig LH | 12 | 11 | 13 | 2 | 2 |
Use mallet and chisel | |||||
Mallt LH Chis RH | 16 | 11 | 9 | 3 | 3 |
Mallt RH Chis LH | 18 | - | 15 | 3 | 3 |
Task | SAMS | Hook | Myo | SAMS | Myo |
Pick up coins | 34 | 17 | 27 | 3 | 2 |
Lift and pour kettle | 29 | 15 | - | 3 | 1 |
Tear and fold paper | 46 | 46 | 26 | 2 | 2 |
Put paper in envelope | |||||
Paper LH Env RH | 19 | 18 | 22 | 2 | 2 |
Paper RH Env LH | 13 | 18 | 20 | 2 | 2 |
Grasp cup | 8 | 6 | 7 | 2 | 2 |
Grasp Type | Object | Size (mm) | Weight (g) |
---|---|---|---|
Cylindrical | Small Bottle | Ø = 60 | 750 |
Big Bottle | Ø = 85 | 1500 | |
Cylinder | Ø = 70 | 100 | |
Cylinder | Ø = 50 | 500 | |
Cylinder | Ø = 50 | 50 | |
Spherical | Rounde sponge | Ø = 100 | 30 |
Sphere | Ø = 60 | 120 | |
Tri-digital | Sphere | Ø = 35 | 20 |
Sphere | Ø = 45 | 25 | |
Sphere | Ø = 55 | 30 | |
Felt-tip pen | Ø = 20 | 70 | |
Mobile phone | Ø = 40 | 200 | |
Cube | Ø = 50 | 80 | |
Lateral | Postcard | 1 | 10 |
Key | 2 | 80 | |
Floppy disk | 3 | 40 | |
CD | 1 | 30 |
Grasp Type | Cylindrical | Spherical | Tri-Digital | Lateral |
---|---|---|---|---|
N° objects | 5 | 2 | 6 | 4 |
N° trials | 5 | 5 | 5 | 5 |
Successful rate | 25/25 | 10/10 | 27/30 | 20/20 |
Global successful rate = 82/85 |
Study | Control Strategy Subdivision | Robotic Hand | Force Sensor | Slippage Detection | Touch Detection |
---|---|---|---|---|---|
SAMS [106,107,108,110] | 1. Automatic loop 2. Intermediate 2.1. Posture logic 2.2. Force logic 3. Command logic | Laboratory version of the original Southampton Hand [111] | Force-sensitive, resistive sheet | Microphone [108,123] | Light-emitting diode, phototransistor [108,123] |
Reflex control strategy [112] | 1. Target approach phase 1.1. Target identification 1.2. Hand structure 1.3. Grasp mode 2. Grasp phase | Belgrade hand [114] | Not specified | Not specified | Not specified |
Two-phases bio-inspired control strategy [115] | 1. High level 1.1. Decoding of user intentions signals 1.2. Choosing desired grasp and forces 2. Grasping task 2.1. Pre-shaping 2.2. Grasping phase | Underactuated five-finger with 16 DoFs (three for each finger plus one for the thumb opposition) with only six actives (F/E for each finger and the thumb opposition) | Strain gauges sensors on tendons | Not specified | Not specified |
Neural Network-Based control strategy [117] | 1. Pre-shaping 2. Closing 3. Force control 4. Detection stage | Five-finger prototype hand has 10 DoFs (only three actives for the F/E of thumb, index and the rest of fingers) | FSR | The derivative of FSR e RFS | Derivative of RFS |
Hierarchical human-inspired architecture [119] | 1. Human–Machine Interface 2. Haptic Perception 3. High-level control 4. Mid-level control 5. Low-level command | UC2 [121] is composed of three fingers (each finger has 3 phalanges) and 9 DoFs: flexion/extension and the opposing/repositioning for the thumb | FSR | The negative derivative of the force signal | The positive derivative of the force signal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, C.; Cordella, F.; Zollo, L. Hierarchical Human-Inspired Control Strategies for Prosthetic Hands. Sensors 2022, 22, 2521. https://doi.org/10.3390/s22072521
Gentile C, Cordella F, Zollo L. Hierarchical Human-Inspired Control Strategies for Prosthetic Hands. Sensors. 2022; 22(7):2521. https://doi.org/10.3390/s22072521
Chicago/Turabian StyleGentile, Cosimo, Francesca Cordella, and Loredana Zollo. 2022. "Hierarchical Human-Inspired Control Strategies for Prosthetic Hands" Sensors 22, no. 7: 2521. https://doi.org/10.3390/s22072521
APA StyleGentile, C., Cordella, F., & Zollo, L. (2022). Hierarchical Human-Inspired Control Strategies for Prosthetic Hands. Sensors, 22(7), 2521. https://doi.org/10.3390/s22072521