Large-Dynamic-Range and High-Stability Phase Demodulation Technology for Fiber-Optic Michelson Interferometric Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Interferometric Phase Difference Experiment
3.2. Acoustic Signal Test
3.3. Linear Response
3.4. Laser Wavelength Response
3.5. Optical Power Response
3.6. Repeatability Response
3.7. Indoor and Outdoor Tests Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, D.; Hofler, T.; Baker, S.; Yarber, R.; Garrett, S. A fiber-optic interferometric seismometer. J. Light. Technol. 1987, 5, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Yang, J.; Liu, Z. A Compact Fiber-Optic Flow Velocity Sensor Based on a Twin-Core Fiber Michelson Interferometer. IEEE Sens. J. 2008, 8, 1114–1117. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Du, Z.; Wang, X.; Shi, C.; Chen, J. Experimental Study of Some Key Issues on Fiber-Optic Interferometric Sensors Detecting Weak Magnetic Field. IEEE Sens. J. 2008, 8, 1173–1179. [Google Scholar] [CrossRef]
- Meng, H.; Shen, W.; Zhang, G.; Wu, X.; Wang, W.; Tan, C.; Huang, X. Michelson interferometer-based fiber-optic sensing of liquid refractive index. Sens. Actuator B Chem. 2011, 160, 720–723. [Google Scholar] [CrossRef]
- Liu, X.; Jin, B.; Bai, Q.; Wang, Y.; Wang, D.; Wang, Y. Distributed Fiber-Optic Sensors for Vibration Detection. Sensors 2016, 16, 1164. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Yang, J.; Zhou, L.; Jin, W.; Ding, X. Low-coherence Michelson interferometric fiber-optic multiplexed strain sensor array: A minimum configuration. Appl. Opt. 2004, 43, 3211. [Google Scholar] [CrossRef]
- Huang, S.-C.; Lin, H. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber. Appl. Opt. 2007, 46, 7594–7603. [Google Scholar] [CrossRef]
- Chang, T.; Lang, J.; Sun, W.; Chen, J.; Yu, M.; Gao, W.; Cui, H.-L. Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation. IEEE Sens. J. 2017, 17, 7448–7454. [Google Scholar] [CrossRef]
- Moradi, H.; Hosseinibalam, F.; Hassanzadeh, S. Simulation and experimental investigation about interferometric optical fiber acoustic sensor for sensitivity enhancement. Measurement 2019, 137, 556–561. [Google Scholar] [CrossRef]
- Yu, Z.; Dai, H.; Zhang, M.; Zhang, J.; Liu, L.; Jin, X.; Luo, Y. High stability and low harmonic distortion PGC demodulation technique for interferometric optical fiber sensors. Opt. Laser Technol. 2019, 109, 8–13. [Google Scholar] [CrossRef]
- Qu, Z.; Guo, S.; Hou, C.; Yang, J.; Yuan, L. Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors. Opt. Express 2019, 27, 23593–23609. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, P.-C.; Ran, M.; Fu, H.; Yang, H.; Yang, R.; Yisi, D.; Ming, R.; Hongxing, Y. Correction of nonlinear errors from PGC carrier phase delay and AOIM in fiber-optic interferometers for nanoscale displacement measurement. Opt. Express 2020, 28, 2611–2624. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.-C.; Yisi, D.; Ming, R.; Le, Z.; Fu, H.; Hongxing, Y.; Yang, H. Phase modulation depth calculation and setting technique of phase-generated-carrier in fiber-optic interferometer with laser frequency modulation. Opt. Express 2020, 28, 31700–31713. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, P.-C.; Fu, H.; Yang, H.; Yang, R.; Tan, J. Long range dynamic displacement: Precision PGC with sub-nanometer resolution in an LWSM interferometer. Photonics Res. 2021, 10, 59. [Google Scholar] [CrossRef]
- Jia, J.; Jiang, Y.; Zhang, L.; Gao, H.; Jiang, L. Symbiosis-Michelson Interferometer-Based Detection Scheme for the Measurement of Dynamic Signals. IEEE Sens. J. 2019, 19, 7988–7992. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Chen, M.; Wang, M.; Liang, Y.; Meng, Z. A Method to Eliminate the Influence of Frequency-Modulating-Induced Auxiliary Amplitude Modulation on the Calibration of 3 × 3 Coupler Asymmetric Parameters. Sensors 2020, 20, 6180. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, B.; Winder, D.E. Faraday Michelson Interferometers for Signal Demodulation of Fiber-Optic Sensors. J. Light. Technol. 2021, 39, 2552–2558. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, Z.; Li, A.; Liu, Y.; Xia, Z.; Peng, W. Simultaneous Measurement of Vibration and Temperature Using Frequency-Scanned Parallel Phase-Shifting Interferometry. J. Light. Technol. 2021, 39, 4094–4100. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Jin, R.-B.; Feng, M.; Wu, S.; Zhang, L.; Lu, P. All-Optical Demodulation Fiber Acoustic Sensor With Real-Time Controllable Sensitivity Based on Optical Vernier Effect. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, K.; Guo, M.; Li, C.; Li, C.; Yang, Y.; Peng, W.; Yu, Q. Dual Enhanced Fiber-Optic Microphone Using Sensitive Diaphragm-Free Transducer and Ultrahigh-Resolution Spectral Demodulation. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, P.; Qu, Z.; Zhang, J.; Wu, Q.; Liu, D. Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors. Sensors 2021, 21, 8257. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Lu, P.; Qu, Z.; Zhang, J.; Wu, Q.; Liu, D. Large-Dynamic-Range and High-Stability Phase Demodulation Technology for Fiber-Optic Michelson Interferometric Sensors. Sensors 2022, 22, 2488. https://doi.org/10.3390/s22072488
Zhang W, Lu P, Qu Z, Zhang J, Wu Q, Liu D. Large-Dynamic-Range and High-Stability Phase Demodulation Technology for Fiber-Optic Michelson Interferometric Sensors. Sensors. 2022; 22(7):2488. https://doi.org/10.3390/s22072488
Chicago/Turabian StyleZhang, Wanjin, Ping Lu, Zhiyuan Qu, Jiangshan Zhang, Qiang Wu, and Deming Liu. 2022. "Large-Dynamic-Range and High-Stability Phase Demodulation Technology for Fiber-Optic Michelson Interferometric Sensors" Sensors 22, no. 7: 2488. https://doi.org/10.3390/s22072488
APA StyleZhang, W., Lu, P., Qu, Z., Zhang, J., Wu, Q., & Liu, D. (2022). Large-Dynamic-Range and High-Stability Phase Demodulation Technology for Fiber-Optic Michelson Interferometric Sensors. Sensors, 22(7), 2488. https://doi.org/10.3390/s22072488