Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multichannel Bioimpedance Measurement
2.2. Pulse Wave Velocity Determination
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salvi, P. Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure; Springer: Milano, Italy, 2012; Volume 9788847024, ISBN 9788847024397. [Google Scholar]
- Lehmann, E.D. Clinical value of aortic pulse-wave velocity measurement. Lancet 1999, 354, 528–529. [Google Scholar] [CrossRef]
- Asmar, R.; Rudnichi, A.; Blacher, J.; London, G.M.; Safar, M.E. Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive population. Am. J. Hypertens. 2001, 14, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Koivistoinen, T.; Kööbi, T.; Jula, A.; Hutri-Kähönen, N.; Raitakari, O.T.; Majahalme, S.; Kukkonen-Harjula, K.; Lehtimäki, T.; Reunanen, A.; Viikari, J.; et al. Pulse wave velocity reference values in healthy adults aged 26–75 years. Clin. Physiol. Funct. Imaging 2007, 27, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Chowienczyk, P. Pulse wave analysis: What do the numbers mean? Hypertension 2011, 57, 1051–1052. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.F.; Jiang, A.P.X.J. Pulse wave analysis. Br. J. Clin. Pharmacol. 2001, 51, 507–522. [Google Scholar] [CrossRef]
- Gurovich, A.N.; Braith, R.W. Pulse wave analysis and pulse wave velocity techniques: Are they ready for the clinic. Hypertens. Res. 2011, 34, 166–169. [Google Scholar] [CrossRef]
- Alastruey, J.; Hunt, A.A.E.; Weinberg, P.D. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int. J. Numer. Methods Biomed. Eng. 2014, 30, 249–279. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, M.; Niki, K.; Ohte, N.; Okada, T.; Harada, A. Clinical usefulness of wave intensity analysis. Med. Biol. Eng. Comput. 2009, 47, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Calabia, J.; Torguet, P.; Garcia, M.; Garcia, I.; Martin, N.; Guasch, B.; Faur, D.; Vallés, M. Doppler ultrasound in the measurement of pulse wave velocity: Agreement with the complior method. Cardiovasc. Ultrasound 2011, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Liu, B.; McNeill, K.L.; Chowienczyk, P.J. Measurement of pulse wave velocity using pulse wave Doppler ultrasound: Comparison with arterial tonometry. Ultrasound Med. Biol. 2008, 34, 509–512. [Google Scholar] [CrossRef]
- Salvi, P.; Lio, G.; Labat, C.; Ricci, E.; Pannier, B.; Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004, 22, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassertheurer, S.; Kropf, J.; Weber, T.; van der Giet, M.; Baulmann, J.; Ammer, M.; Hametner, B.; Mayer, C.C.; Eber, B.; Magometschnigg, D. A new oscillometric method for pulse wave analysis: Comparison with a common tonometric method. J. Hum. Hypertens. 2010, 24, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Vappou, J.; Luo, J.; Okajima, K.; Di Tullio, M.; Konofagou, E. Aortic pulse wave velocity measured by pulse wave imaging (PWI): A comparison with applanation tonometry. Artery Res. 2011, 5, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmar, R.; Benetos, A.; Topouchian, J.; Laurent, P.; Pannier, B.; Brisac, A.M.; Target, R.; Levy, B.I. Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension 1995, 26, 485–490. [Google Scholar] [CrossRef]
- Salvi, P.; Grillo, A.; Parati, G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens. Res. 2015, 38, 646–648. [Google Scholar] [CrossRef]
- Hametner, B.; Parragh, S.; Mayer, C.; Weber, T.; Van Bortel, L.; De Buyzere, M.; Segers, P.; Rietzschel, E.; Wassertheurer, S. Assessment of model based (input) impedance, pulse wave velocity, and wave reflection in the asklepios cohort. PLoS ONE 2015, 10, e0141656. [Google Scholar] [CrossRef] [Green Version]
- Baulmann, J.; Schillings, U.; Rickert, S.; Uen, S.; Düsing, R.; Illyes, M.; Cziraki, A.; Nickering, G.; Mengden, T. A new oscillometric method for assessment of arterial stiffness: Comparison with tonometric and piezo-electronic methods. J. Hypertens. 2008, 26, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Zhang, Q.; Ko, S. Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform. Comput. Electr. Eng. 2013, 39, 103–111. [Google Scholar] [CrossRef]
- Sone, S.; Hayase, T.; Funamoto, K.; Shirai, A. Photoplethysmography and ultrasonic-measurement-integrated simulation to clarify the relation between two-dimensional unsteady blood flow field and forward and backward waves in a carotid artery. Med. Biol. Eng. Comput. 2017, 55, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Solà, J.; Chételat, O.; Sartori, C.; Allemann, Y.; Rimoldi, S.F. Chest pulse-wave velocity: A novel approach to assess arterial stiffness. IEEE Trans. Biomed. Eng. 2011, 58, 215–223. [Google Scholar] [CrossRef]
- Gomez-Clapers, J.; Casanella, R.; Pallas-Areny, R. A novel method to obtain proximal plethysmographic information from distal measurements using the impedance plethysmogram. J. Electr. Bioimpedance 2015, 6, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Soukup, L.; Hruskova, J.; Jurak, P.; Halamek, J.; Zavodna, E.; Viscor, I.; Matejkova, M.; Vondra, V. Comparison of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmography. Med. Biol. Eng. Comput. 2019, 57, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Vondra, V.; Jurak, P.; Viscor, I.; Halamek, J.; Leinveber, P.; Matejkova, M.; Soukup, L. A multichannel bioimpedance monitor for full-body blood flow monitoring. Biomed. Tech. 2016, 61, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kööbi, T.; Kähönen, M.; Iivainen, T.; Turjanmaa, V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics—A validation study. Clin. Physiol. Funct. Imaging 2003, 23, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kusche, R.; Klimach, P.; Ryschka, M. A multichannel real-time bioimpedance measurement device for pulse wave analysis. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Soukup, L.; Vondra, V.; Viscor, I.; Jurak, P.; Halamek, J. Pulse wave velocity and cardiac output vs. heart rate in patients with an implanted pacemaker based on electric impedance method measurement. In Proceedings of the XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), Heilbad Heiligenstadt, Germany, 22–25 April 2013; Volume 434, p. 012050. [Google Scholar] [CrossRef]
- Bernstein, D.P. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J. Electr. Bioimpedance 2010, 1, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.P.; Lemmens, H.J.M. Stroke volume equation for impedance cardiography. Med. Biol. Eng. Comput. 2005, 43, 443–450. [Google Scholar] [CrossRef]
- Langer, P.; Jurák, P.; Vondra, V.; Halámek, J.; Mešťaník, M.; Tonhajzerová, I.; Viščor, I.; Soukup, L.; Matejkova, M.; Závodná, E.; et al. Respiratory-induced hemodynamic changes measured by whole-body multichannel impedance plethysmography. Physiol. Res. 2018, 67, 571–581. [Google Scholar] [CrossRef]
- Halter, R.J.; Hartov, A.; Paulsen, K.D. A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Trans. Biomed. Eng. 2008, 55, 650–659. [Google Scholar] [CrossRef]
- Otten, D.M.; Rubinsky, B. Cryosurgical monitoring using bioimpedance measurements—A feasibility study for electrical impedance tomography. IEEE Trans. Biomed. Eng. 2000, 47, 1376–1381. [Google Scholar] [CrossRef]
- Paulson, K.; Lionheart, W.; Pidcock, M. Optimal experiments in electrical impedance tomography. IEEE Trans. Med. Imaging 1993, 12, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, G.J.; Blue, R.S.; Newell, J.C.; Isaacson, D.; Edic, P.M. Electrical impedance tomography. IEEE Signal Process. Mag. 2001, 18, 31–43. [Google Scholar] [CrossRef]
- Matejkova, M.; Vondra, V.; Soukup, L.; Plesinger, F.; Viscor, I.; Halamek, J.; Jurak, P. Changes of pulse wave velocity in the lower limbs in hypertensive patients. In Proceedings of the Computing in Cardiology, Nice, France, 6–9 September 2015; IEEE Computer Society: Manhattan, NY, USA, 2015; Volume 42, pp. 257–260. [Google Scholar]
- Vondra, V.; Jurak, P.; Halamek, J.; Viscor, I. Device for Blood Flow Property Measurement and Method of Its Connection. U.S. Patent 9,167,984, 27 October 2015. [Google Scholar]
- Koivistoinen, T.; Lyytikäinen, L.P.; Aatola, H.; Luukkaala, T.; Juonala, M.; Viikari, J.; Lehtimäki, T.; Raitakari, O.T.; Kähönen, M.; Hutri-Kähönen, N. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension 2018, 71, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Park, C.G.; Park, J.S.; Suh, S.Y.; Choi, C.U.; Kim, J.W.; Kim, S.H.; Lim, H.E.; Rha, S.W.; Seo, H.S.; et al. Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: Invasive study. J. Hum. Hypertens. 2006, 21, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH guidelines for themanagement of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Widimsky, J.; Filipovsky, J.; Ceral, J.; Cifkova, R.; Linhart, A.; Monhart, V.; Rosolova, H.; Seidlerova Mlikova, J.; Soucek, M.; Spinar, J.; et al. Diagnosticke a lecebne postupy u arterialni hypertenze—Verze 2017. Doporuceni ceske spolecnosti pro hypertenzi. Vnitr Lek 2018, 64, 771–796. [Google Scholar]
- Mattace-Raso, F.U.S.; Hofman, A.; Verwoert, G.C.; Wittemana, J.C.M.; Wilkinson, I.; Cockcroft, J.; McEniery, C.; Yasmina; Laurent, S.; Boutouyrie, P.; et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘Establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef]
- McEniery, C.M.; Yasmin; Hall, I.R.; Qasem, A.; Wilkinson, I.B.; Cockcroft, J.R. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The anglo-cardiff collaborative trial (ACCT). J. Am. Coll. Cardiol. 2005, 46, 1753–1760. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; O’Rourke, M.F.; Vlachopoulos, C.; Hoeks, A.P.; Reneman, R.S. McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles; Hodder Arnold: London, UK, 2011; ISBN 9781444128789. [Google Scholar]
- Blacher, J.; Asmar, R.; Djane, S.; London, G.M.; Safar, M.E. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999, 33, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.L.; Tanaka, H.; Palta, P.; Patel, M.D.; Camplain, R.; Couper, D.; Cheng, S.; Al Qunaibet, A.; Poon, A.K.; Heiss, G. Repeatability of central and peripheral pulse wave velocity measures: The atherosclerosis risk in communities (ARIC) study. Am. J. Hypertens. 2016, 29, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Baier, D.; Teren, A.; Wirkner, K.; Loeffler, M.; Scholz, M. Parameters of pulse wave velocity: Determinants and reference values assessed in the population-based study LIFE-adult. Clin. Res. Cardiol. 1234, 107, 1050–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, A.; Zócalo, Y.; Bia, D.; Wray, S.; Fischer, E.C. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. 2018, 20, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bioimp. Channel | Current Source | Location |
---|---|---|
1 | Gi1 | Neck left |
2/3 | Gi1/Gi2 | Thigh left/right |
4/5 | Gi1/Gi2 | Calf left/right |
6/7 | Gi3 | Arm left/right |
8/9 | Gi3 | Forearm left/right |
n | Age (Years) | Height (m) | Weight (kg) | BMI (kg/m2) | ||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
G1 | Women | 56 | 26.3 ± 5.2 | 1.68 ± 0.07 | 63 ± 11 | 22.1 ± 3.5 |
Men | 62 | 24.7 ± 4.2 | 1.82 ± 0.07 | 80 ± 12 | 24.0 ± 3.1 | |
All | 118 | 25.5 ± 4.7 | 1.76 ± 0.1 | 72 ± 14 | 23.1 ± 3.4 | |
G2 | Women | 18 | 54.6 ± 5.4 | 1.66 ± 0.06 | 71 ± 13 | 26.1 ± 4.8 |
Men | 24 | 50.9 ± 5.5 | 1.8 ± 0.06 | 89 ± 13 | 27.6 ± 3.1 | |
All | 42 | 52.5 ± 5.7 | 1.74 ± 0.1 | 82 ± 16 | 26.9 ± 4.0 | |
G3 | Women | 17 | 68.2 ± 3.6 | 1.62 ± 0.09 | 77 ± 14 | 29.1 ± 4.4 |
Men | 23 | 66.2 ± 4.3 | 1.78 ± 0.06 | 89 ± 13 | 28.1 ± 3.7 | |
All | 40 | 67.0 ± 4.1 | 1.71 ± 0.11 | 84 ± 15 | 28.6 ± 4.1 |
Diastolic Pressure (mmHg) | Systolic Pressure (mmHg) | Pulse Pressure (mmHg) | Heart Rate (bpm) | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
G1 | 68 ± 8 | 116 ± 12 | 48 ± 13 | 67 ± 10 |
G2 | 76 ± 7 | 127 ± 13 | 51 ± 10 | 65 ± 9 |
G3 | 75 ± 8 | 132 ± 14 | 57 ± 13 | 63 ± 10 |
Bioimp. Channel | a (-) | r (-) | PWV (m/s) | p | PWV (m/s) | p | PWV (m/s) |
---|---|---|---|---|---|---|---|
Mean ± SD | G1 | G1→G2 | G2 | G2→G3 | G3 | ||
2 | 0.111 ± 0.006 | 0.842 | 5.86 ± 0.81 | <0.05 | 8.44 ± 1.68 | <0.05 | 10.79 ± 1.95 |
3 | 0.108 ± 0.005 | 0.839 | 5.93 ± 0.90 | <0.05 | 8.40 ± 1.64 | <0.05 | 10.73 ± 1.87 |
4 | 0.089 ± 0.006 | 0.786 | 7.10 ± 0.81 | <0.05 | 9.30 ± 1.43 | <0.05 | 10.89 ± 2.24 |
5 | 0.093 ± 0.007 | 0.806 | 7.12 ± 0.86 | <0.05 | 9.25 ± 1.38 | <0.05 | 11.23 ± 2.12 |
2_4 | 0.011 ± 0.010 | 0.091 | 1.82 ± 2.55 | 0.081 | 2.58 ± 1.87 | 0.233 | 11.98 ± 2.54 |
3_5 | 0.023 ± 0.009 | 0.181 | 1.66 ± 2.40 | 0.030 | 2.59 ± 2.23 | 0.743 | 12.42 ± 2.43 |
Bioimp. Channel | a (-) | r (-) | PWV (m/s) | p | PWV (m/s) | p | PWV (m/s) |
---|---|---|---|---|---|---|---|
Mean ± SD | G1 | G1→G2 | G2 | G2→G3 | G3 | ||
6 | 0.096 ± 0.018 | 0.390 | 12.58 ± 3.33 | <0.05 | 14.23 ± 4.77 | <0.05 | 16.83 ± 4.38 |
7 | 0.097 ± 0.016 | 0.397 | 12.34 ± 3.36 | <0.05 | 14.18 ± 4.76 | <0.05 | 16.42 ± 3.86 |
8 | 0.092 ± 0.015 | 0.454 | 12.00 ± 2.63 | <0.05 | 13.47 ± 3.50 | <0.05 | 16.27 ± 4.44 |
9 | 0.088 ± 0.013 | 0.481 | 11.00 ± 2.14 | <0.05 | 12.06 ± 3.17 | <0.05 | 15.52 ± 4.20 |
6_8 | 0.017 ± 0.014 | 0.087 | 11.60 ± 3.28 | 0.262 | 12.31 ± 3.78 | 0.795 | 12.09 ± 3.62 |
7_9 | 0.012 ± 0.008 | 0.095 | 9.96 ± 2.17 | 0.341 | 10.36 ± 2.41 | 0.900 | 10.42 ± 1.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soukup, L.; Jurak, P.; Halamek, J.; Viscor, I.; Matejkova, M.; Leinveber, P.; Vondra, V. Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study. Sensors 2022, 22, 1910. https://doi.org/10.3390/s22051910
Soukup L, Jurak P, Halamek J, Viscor I, Matejkova M, Leinveber P, Vondra V. Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study. Sensors. 2022; 22(5):1910. https://doi.org/10.3390/s22051910
Chicago/Turabian StyleSoukup, Ladislav, Pavel Jurak, Josef Halamek, Ivo Viscor, Magdalena Matejkova, Pavel Leinveber, and Vlastimil Vondra. 2022. "Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study" Sensors 22, no. 5: 1910. https://doi.org/10.3390/s22051910