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Abstract: Pulse wave velocity is a commonly used parameter for evaluating arterial stiffness and
the overall condition of the cardiovascular system. The main goal of this study was to establish a
methodology to test and validate multichannel bioimpedance as a suitable method for whole-body
evaluations of pulse waves. We set the proximal location over the left carotid artery and eight
distal locations on both the upper and lower limbs. In this way, it was possible to simultaneously
evaluate pulse wave velocity (PWV) in the upper and lower limbs and in the limbs via four extra
PWV measurements. Data were acquired from a statistical group of 220 healthy subjects who were
divided into three age groups. The data were then analysed. We found a significant dependency
of aortic PWV on age in those values measured using the left carotid as the proximal. PWV values
in the upper and lower limbs were found to have no significant dependency on age. In addition,
the PWV in the left femoral artery shows comparable values to published already carotid-femoral
values. Those findings prove the reliability of whole-body multichannel bioimpedance for pulse
wave velocity evaluation and provide reference values for whole-body PWV measurement.

Keywords: bioimpedance; pulse wave velocity (PWV); arterial stiffness

1. Introduction

The arterial system’s main function is to satisfy the needs of tissues and absorb
pulsation blood flow from the left ventricle and convert it into a continuous flow. This
enables continuous tissue oxygenation and lower heart strain. Greater arterial stiffness
leads to an increase in pulse wave propagation, a decrease in blood volume accumulation
during systole, an increase in systolic pressure, and a decrease in diastolic pressure. It gives
rise to increased heart strain and lower tissue supply during diastole [1–3]. Because this is
a physiological process, PWV should show an upward trend with aging [2–4].

Many techniques and parameters are used to evaluate arterial stiffness, including
pulse wave analysis (PWA) [5–7], pulse wave intensity [8,9], and pulse wave velocity
(PWV) [1–4,7]. Pulse wave velocity is a commonly used parameter in clinical practice. It
refers to the velocity that the pulse wave reaches between proximal and distal locations
and reflects to what extent the blood is decelerated by arterial compliance: the conversion
of kinetic energy to potential energy. The PWV is defined as the ratio between the travelled
distance (Lp-d) and time delay (∆t) that the pulse wave needs to move from the proximal to
the distal site:

PWV =
Lp-d

∆t
(1)

The distance is commonly measured superficially between the proximal and distal
sites [4,10,11]. Depending on which proximal site is used, certain subtraction methods
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or correction factors can be applied (e.g., the subject’s age). The subtraction method is
used especially in the case of carotid–femoral pulse wave velocity with the applanation
tonometry technique because the right carotid is used as the proximal site [3,11–13]. These
distances are measured from the carotid artery to the suprasternal notch and from the
femoral artery to the suprasternal notch. Finally, those are subtracted.

The situation surrounding time delay, or pulse transit time, is slightly more com-
plicated. There are many techniques that can be used to acquire it, and each has some
limitations. The most widely used approaches are applanation tonometry and Doppler
ultrasound. Applanation tonometry allows for the measurement of the pressure wave only
at those locations where the arteries are superficially palpated. This typically means the
carotid, femoral, radial, or brachial arteries [7,11,14–16]. Doppler ultrasound has almost no
limitations with respect to which locations can be used, but it requires the operator to have
a high degree of skill. Both techniques largely acquire signals from the proximal and distal
sites consequently. Because both signals require separate measurements, it is necessary to
use some reference for time interval subtraction, commonly ECG. The proximal and distal
time intervals are related to the R wave of ECG, and the final time delay is subtracted from
the mean of a few consequent beats [10,11,14]. This can distort the final time delay and
subsequently the PWV value due to changes in hemodynamic conditions.

As an alternative, it is possible to use other methods such as oscillometric [13,17,18],
plethysmographic [19–22], and bioimpedance methods [4,23–26]. The bioimpedance method
seems interesting especially because of its non-invasiveness, ease of use, the possibility
to take measurements in several locations simultaneously, and its possibility of use dur-
ing hemodynamic excitations. The original use of bioimpedance was to evaluate stroke
volume and cardiac output. The pulsation bioimpedance component ∆Z corresponds to
pulsation blood volume in the observed body part, or rather in the main arteries [27–30].
In most cases, one- or two-channel applications are used, whereas multichannel devices
are largely associated with electrical impedance tomography (EIT) [31–34]. Only a few
cardiological devices can measure three or four channels simultaneously [25,26]. The multi-
channel bioimpedance method enables the acquisition of bioimpedance in several channels
simultaneously [23,24,30]. For evaluating PWV based on bioimpedance, it is necessary to
determine the correct proximal channel, especially in cases of taking measurements from
the heart. This is complicated because bioimpedance measures blood volume changes
indirectly. In the case of the Multichannel Bioimpedance Monitor (MBM, ISI BRNO, Czech
Republic), the proximal location is set based on a comparison of bioimpedance information
with flow information using Doppler echocardiography as the channel located over the left
carotid [23].

The main goal of this study was to introduce a methodology, test, and validate mul-
tichannel bioimpedance as a suitable method for whole-body evaluations of pulse wave
velocity in a group of 200 volunteers. Moreover, reference values for whole-body PWV
are presented.

2. Materials and Methods

The study was based on a group of 220 normal healthy subjects who had no history of
disease with major impact on PWV values and took no related medications. Prior to the
experiment, they completed a questionnaire about their health state and medication. The
normal subjects were recruited from the general public based on their interest. The study
group was composed of a similar proportion of men and women. The measurements were
performed at a special laboratory with constant environmental conditions. For this study, a
rest phase was used with spontaneous breathing lasting two minutes in the supine position
on an examination bed while the subjects were awake.

The study was approved by the ethics committee at St. Anne’s University Hospital in
Brno. All individual participants were fully informed and signed informed consent forms.

Data were acquired with a Multichannel Bioimpedance Monitor (MBM, Institute of
Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic) with up
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to 18 bioimpedance channels, a standard 12-lead ECG monitor (ECG12, Institute of Scien-
tific Instruments of the Czech Academy of Sciences, Brno, Czech Republic), a Finometer
Pro (Finapres Medical Systems B.V., Amsterdam, The Netherlands) for continuous blood
pressure monitoring, and a phonocardiograph (PCG 1.0, Institute of Scientific Instruments
of the Czech Academy of Sciences, Brno, Czech Republic) for heart sound recording. All
signals were recorded with a sampling frequency of 500 Hz. In addition, blood pressure
was acquired via a patient monitor (CARESCAPE™ B850, GE Healthcare, Chicago, IL,
USA) at the beginning and the end of each measurement.

2.1. Multichannel Bioimpedance Measurement

We focused on whole-body pulse wave velocity monitoring based on bioimpedance.
Bioimpedance is measured indirectly using Ohm’s law; thus, the investigated body part
is connected to an alternate current source and a voltage drop is observed. The study
was based on the Multichannel Bioimpedance Monitor (MBM), which is able to mea-
sure blood flow properties in up to 18 channels using 3 current sources with different
frequencies [24,30,35,36]. The default frequencies were set to 49 (Gi1), 50 (Gi2), and 51 kHz
(Gi3). The first current source (Gi1) was placed between the left part of the neck and the
left ankle, the second (Gi2) was placed between the right neck and the right ankle, and the
last (Gi3) was placed between the left and right wrists, as shown in Figure 1 [24].
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Figure 1. Localization of the bioimpedance channels (1–9) and current sources (Gi1–Gi3).

In this way, the bioimpedance channels placed on the left and right body parts were
separated vertically, as well as the channels placed between hands horizontally. Individual
bioimpedance channels were localized by their position and the frequency selectivity of the
voltage detectors. Placement of the channels and matching current sources are shown in
Figure 1 and Table 1.

The best proximal position was identified as the channel located over the left carotid
(left neck) [23].

2.2. Pulse Wave Velocity Determination

Pulse wave velocity is defined as the ratio between distance and the corresponding
time delay, as shown in Equation (1). The distance was measured directly from the sternum
(at the level of second rib) to each proximal location, specifically to the center of the
voltage electrode pairs. To determine the time delay, the pulsation component (∆Z) of
the bioimpedance signal was employed. Thus, for stroke volume, −dZ/dt max peak was
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chosen as the reference point to acquire the time delay. −dZ/dt max represents maximal
axial blood acceleration [29]. The pulsation bioimpedance component ∆Z was acquired
using bandpass filtration (Butterworth IIR filter; 0.6–18 Hz). Next, it was inverted, derived,
and −dZ/dt max was detected for each channel [23,24,27,29,30].

Table 1. The bioimpedance channels (1–9) localization with corresponding current sources (Gi1–3).

Bioimp. Channel Current Source Location

1 Gi1 Neck left

2/3 Gi1/Gi2 Thigh left/right

4/5 Gi1/Gi2 Calf left/right

6/7 Gi3 Arm left/right

8/9 Gi3 Forearm left/right

The time delay between proximal and distal locations, more precisely between the
−dZ/dt max of those channels, could have thus been determined. An example of time
delay determination is shown in Figure 2. The proximal reference location was set to
the left carotid (channel 1) [23]. All of the eight remaining channels were used as distal
locations. Moreover, to evaluate PWV in the upper and lower limbs, it was possible to use
the channels closer to the heart as the proximal location (thighs and arms) and the distant
locations (calves and forearms) as the distal location.
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−dZ1/dt) and a distal location (left thigh −dZ2/dt).

Finally, twelve pulse wave velocity values were acquired using Equation (1).

2.3. Statistical Analysis

The statistical analysis focused on the relationship between age and PWV.
First, the study group was divided into three subgroups based on age, namely 20–40,

40–60, and 60–80 years, and described by mean and standard deviations (Table 2). Next,
representative PWV values were determined using mean and standard deviations for
each age group and distal location. The next analysis focused on the effect of aging using
regression analysis. For this, a linear polynomial was chosen:

PWV = a×AGE + b (2)

where a represents the slope of the line and b is a constant referred to as the y intercept.
In order to simplify and make it more transparent, only two locations with the highest
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dependence of PWV on age were analyzed. The strongest dependence can be described by
the slope of the line: parameter a in Equation (2). To select the best possible locations, the
bootstrap function with one hundred repetitions was used. Thus, the polynomial equation
was calculated one hundred times for a random sample of the studied group. After that, the
mean value and standard deviation were computed based on the one hundred a constants
of the polynomial equation. The two channels with the highest mean constants were
selected for the next regression analysis as the representative.

Table 2. The statistical group’s characteristics.

n Age (Years) Height (m) Weight (kg) BMI (kg/m2)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

G1
Women 56 26.3 ± 5.2 1.68 ± 0.07 63 ± 11 22.1 ± 3.5

Men 62 24.7 ± 4.2 1.82 ± 0.07 80 ± 12 24.0 ± 3.1
All 118 25.5 ± 4.7 1.76 ± 0.1 72 ± 14 23.1 ± 3.4

G2
Women 18 54.6 ± 5.4 1.66 ± 0.06 71 ± 13 26.1 ± 4.8

Men 24 50.9 ± 5.5 1.8 ± 0.06 89 ± 13 27.6 ± 3.1
All 42 52.5 ± 5.7 1.74 ± 0.1 82 ± 16 26.9 ± 4.0

G3
Women 17 68.2 ± 3.6 1.62 ± 0.09 77 ± 14 29.1 ± 4.4

Men 23 66.2 ± 4.3 1.78 ± 0.06 89 ± 13 28.1 ± 3.7
All 40 67.0 ± 4.1 1.71 ± 0.11 84 ± 15 28.6 ± 4.1

In addition, a two-sided t-test was carried out to compare the difference between the
age groups with the null hypothesis that two independent samples would have identical
average values.

The data processing was performed using Python 5.

3. Results

Eight subjects had to be excluded because of the poor quality of their acquired signals.
In addition, inappropriate subjects were excluded based on the well-known relationship
between pulse wave velocity values and blood pressure [37–39]. The ESC/ESH Guidelines
for managing arterial hypertension classify first hypertension grade with systolic pressure
in the 150–159 mmHg range or diastolic pressure 90–99 mmHg [39]. Those subjects were
included in the statistical analysis based on the finding that 72% of men and 65% of women
in the Czech population aged 55–64 years have hypertension [40]. However, there were
22 subjects with systolic pressure in the 140–150 mmHg range and 3 subjects with diastolic
pressure in the 90–96 mmHg range, mainly included in the age group of 60–80 years.
Subjects with higher blood pressures were excluded.

The results are based on 200 normal healthy subjects with adequate signal quality. The
subjects’ characteristics are presented in Table 2.

Hemodynamic parameters such as heart rate, systolic, and diastolic blood pressure for
statistical groups are presented in Table 3 and Figure 3.

Table 3. Blood pressure and heart rate characteristic for the statistical group.

Diastolic Pressure
(mmHg)

Systolic Pressure
(mmHg)

Pulse Pressure
(mmHg)

Heart Rate
(bpm)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

G1 68 ± 8 116 ± 12 48 ± 13 67 ± 10

G2 76 ± 7 127 ± 13 51 ± 10 65 ± 9

G3 75 ± 8 132 ± 14 57 ± 13 63 ± 10
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Representative pulse wave velocity values for the statistical group to the lower limbs
are listed in Figure 4 and Table 4. Corresponding values for the upper limbs are shown in
Figure 5 and Table 5.
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boxes) and right (grey boxes) body part, and for age groups G1 (20–40 years), G2 (40–60 years), and
G1 (60–80 years).
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Table 4. Reference PWV values (mean ± SD) to the lower limbs for age group G1 (20–40 years),
G2 (40–60 years), G3 (60–80 years). Parameter a represents the mean ± SD of the slope of the regres-
sion line described by Equation (2); parameter r represents correlation coefficient.

Bioimp.
Channel

a (-) r
(-)

PWV (m/s) p PWV (m/s) p PWV (m/s)

Mean ± SD G1 G1→G2 G2 G2→G3 G3

2 0.111 ± 0.006 0.842 5.86 ± 0.81 <0.05 8.44 ± 1.68 <0.05 10.79 ± 1.95

3 0.108 ± 0.005 0.839 5.93 ± 0.90 <0.05 8.40 ± 1.64 <0.05 10.73 ± 1.87

4 0.089 ± 0.006 0.786 7.10 ± 0.81 <0.05 9.30 ± 1.43 <0.05 10.89 ± 2.24

5 0.093 ± 0.007 0.806 7.12 ± 0.86 <0.05 9.25 ± 1.38 <0.05 11.23 ± 2.12

2_4 0.011 ± 0.010 0.091 1.82 ± 2.55 0.081 2.58 ± 1.87 0.233 11.98 ± 2.54

3_5 0.023 ± 0.009 0.181 1.66 ± 2.40 0.030 2.59 ± 2.23 0.743 12.42 ± 2.43

Tables 4 and 5 include reference PWV values, and regression parameter a represents
the slope of the line described by Equation (2). Moreover, the p-value of the two-sided t-test
compares the PWV values between the age groups.

Based on the highest parameter a value from Tables 4 and 5, channels 2 and 3 were
chosen, corresponding with the left and right thighs as a representative example for per-
forming the regression analysis. The relationship between pulse wave velocity and the
subject’s age could be described by the regression equation PWV = 0.111 × AGE + 3.021
and a correlation coefficient 0.842 for the left thigh, and PWV = 0.108 × AGE + 3.154 and
a correlation coefficient of 0.839 for the right thigh. These relationships are graphically
represented in Figure 6.
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Table 5. Reference PWV values (mean ± SD) to the upper limbs for age group G1 (20–60 years),
G2 (40–60 years), and G3 (60–80 years). Parameter a represents the mean ± SD of the slope of the
regression line described by Equation (2); parameter r represents appropriate correlation coefficient.

Bioimp.
Channel

a (-) r
(-)

PWV (m/s) p PWV (m/s) p PWV (m/s)

Mean ± SD G1 G1→G2 G2 G2→G3 G3

6 0.096 ± 0.018 0.390 12.58 ± 3.33 <0.05 14.23 ± 4.77 <0.05 16.83 ± 4.38

7 0.097 ± 0.016 0.397 12.34 ± 3.36 <0.05 14.18 ± 4.76 <0.05 16.42 ± 3.86

8 0.092 ± 0.015 0.454 12.00 ± 2.63 <0.05 13.47 ± 3.50 <0.05 16.27 ± 4.44

9 0.088 ± 0.013 0.481 11.00 ± 2.14 <0.05 12.06 ± 3.17 <0.05 15.52 ± 4.20

6_8 0.017 ± 0.014 0.087 11.60 ± 3.28 0.262 12.31 ± 3.78 0.795 12.09 ± 3.62

7_9 0.012 ± 0.008 0.095 9.96 ± 2.17 0.341 10.36 ± 2.41 0.900 10.42 ± 1.86

4. Discussion

Based on previous findings, the bioimpedance method appears to be suitable for
evaluating pulse wave velocity [4,23,25–27]. One proximal and one distal location are used
in the case of commonly employed methods and bioimpedance. Nevertheless, proximal
and distal locations are not measured simultaneously in most cases. This leads to a
distortion of the PWV values due to changes in hemodynamic conditions such as heart
rate and blood pressure. In addition, a high degree of professional experience is needed,
especially for Doppler echocardiography and applanation tonometry. In comparison, the
Multichannel Bioimpedance Monitor is a user-friendly device that enables the acquisition
of blood volume change information in up to eighteen locations simultaneously [23,24,30].
However, methodology and reference values for whole-body (multichannel) applications
were still lacking.

The distance measurement methodology was assumed from commonly used PWV
measurement methods. Thus, it was measured directly on the body surface [1,4,6,15,27].
In case of time delay, it was necessary to correctly set the proximal and distal locations. The
number of used locations for pulse wave velocity application was reduced to the nine most
important: one proximal and eight distal. The selection of the correct proximal location
was set to channel 1 over the left carotid based on a previous study [23].

The statistical analysis was based on the fact that arterial wall properties, such as
elasticity, change with age; loss of elasticity results in an increase in PWV. This mainly
appears in aortic PWV as the aorta is the most elastic human artery. The influence of aging
on PWV values can be described by regression analysis. This is based on the highest slope
of the regression line for channels 2 and 3, which were placed on the left and right thighs
as being representative. The left thigh, or rather the left femoral artery, is commonly used
for aortic PWV determination [2–4]. A strong dependence of PWV on aging described by
the regression model for the right and left thigh was found. PWV dependency on age is
mostly described by a polynomial of the second-order [4,41,42]. However, in this study,
the second-order polynomial almost reached the parameters of a line, so the equation of a
line seems to be better for making the description. Linear regression was used in [3], where
the regression coefficient was 0.114 on a sample of 1087 subjects. Moreover, looking at
Tables 4 and 5, especially at the p-value, it is evident that pulse wave velocity changes with
aging are more evident (p < 0.05) in those cases where the proximal location is set at the
left carotid. Those segments include a number of large elastic arteries that lose compliance
with aging. PWV in the upper and lower limbs showed no significant (0.081 < p < 0.900)
changes with age in the case of normal healthy subjects.

It is well-known that arterial stiffness has an impact on blood pressure. Arterial elas-
ticity loss leads to an increase in systolic pressure, a decrease in diastolic pressure, and a
resulting increase in pulse pressure. However, an increase in pulse pressure is influenced
by additional factors such as ventricular ejection, for example [43]. Diastolic pressure in
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addition to PWV can be marked as mechanical factors affecting cardiovascular risk [44].
A relationship between blood pressure and PWV can be described by the correlation co-
efficient. The PWV of the left thigh was chosen as representative because of its strongest
dependence on age and its correspondence with carotid-femoral (aortic) PWV. We found
that the correlation coefficient, with lower (rl) and upper (ru) bounds for a 95% confidence
interval, was 0.397 (rl = 0.270, ru = 0.509) for diastolic, 0.534 (rl = 0.425, ru = 0.628) for
systolic, and 0.320 (rl = 0.187, ru = 0.441) for pulse pressure for all subjects. Those findings
show relationships that would be adequate for normal healthy subjects. The study was
based on 174 subjects (59 ± 12.03 years old), where 47% had hypertension, and we obtains
correlation coefficients of 0.110 for diastolic, 0.330 for systolic, and 0.363 for pulse pres-
sure for all subjects [38]. All parameters were measured invasively along the descending
thoracoabdominal aorta [38].

Comparing PWV values in the various age groups was more complicated. As was
mentioned, the carotid-femoral PWV is considered the gold standard for evaluating cen-
tral (aortic) pulse wave velocity. The pulse wave velocity at bioimpedance channel 2
(over the left femoral artery) has a similar predictive value as the carotid-femoral PWV.
The values detected by bioimpedance were 5.86 ± 0.81 m/s for the 20–40 years group,
8.44 ± 1.68 m/s for those 40–60 years, and 10.79 ± 1.95 m/s for those 60–80 years. There
are many studies with different statistical groups and different ways of dividing the sub-
jects into groups [41,45–47]. In one study [41], carotid-femoral PWV was measured in
1455 subjects with optional or normal blood pressure and no cardiovascular risk factors.
PWV reached values of 6.2 (4.7–7.6) m/s for the 30–39 years group, 7.2 (4.6–9.8) m/s for
those 40–49 years, 8.3 (4.5–12.1) m/s for those 50–59 years, and 10.3 (5.5–15) m/s for those
in the 60–69 years group. In some cases, brachial-ankle pulse wave velocity was used for a
composite evaluation of central and peripheral arterial stiffness. However, there is no com-
parable equivalent in this study. Nevertheless, in another study [45] based on 79 subjects
(75.7 ± 4.6 years), femoral-ankle PWV was acquired using applanation tonometry and an
oscillometric device. The PWV values were obtained using a VP-1000 Plus waveform ana-
lyzer with a mean value of 10.84 ± 1.97 m/s, which is comparable to that of bioimpedance
(from the left thigh to the left calf) 11.98 ± 2.54 m/s for the 60–80 years subgroup.

The absence of internal validation can be marked as a study limitation as well as
the relatively small sample size. It would be more accurate to compare simultaneously
measured bioimpedance and tonometry-based PWVs in the same subjects rather than
performing a comparison with data from other studies.

5. Conclusions

Whole-body multichannel bioimpedance was used to take simultaneous measure-
ments of pulse wave velocity. Based on an analysis, linear dependence exists between
age and pulse wave velocity measured from the neck to the lower limbs for normal
healthy subjects.

We suppose that a corresponding analysis of PWV may be used as a simple marker of
arterial aging. Future perspectives include the acquisition and analysis of patients with
specific diseases impacting PWV, such as hypertension and diabetes.

The whole-body multichannel bioimpedance allows for taking simultaneous measure-
ments of proximal and distal sites to eliminate possible distortion. Moreover, it enables the
evaluation of both central and peripheral PWV simultaneously without the need for highly
skilled medical staff.
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