Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ERT Methodology
2.3. Soil Sampling and Analytical Methods
2.4. Data Analyses
3. Results and Discussion
3.1. ERT Model
3.2. Electrical Resistivity and Soil Moisture Imaging
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- MAEC. Desertificación. Ministerio de Asuntos Exteriores; MAEC: Madrid, Spain, 2018. [Google Scholar]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar] [CrossRef]
- Hydrological Plan of the Segura River Basin. Memoria PHDS 2015/21. Confederación Hidrográfica del Segura, Ministerio de Agricultura, Alimentación y Medio Ambiente; Spanish Government: Madrid, Spain, 2015; p. 806.
- Bastida, F.; Torres, I.F.; Romero-Trigueros, C.; Baldrian, P.; Vetrovsky, T.; Bayona, J.M.; Alarcon, J.J.; Hernandez, T.; Garcia, C.; Nicolas, E. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biol. Biochem. 2017, 104, 226–237. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medrano, H.; Tomas, M.; Martorell, S.; Flexas, J.; Hernandez, E.; Rossello, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Torres, R.; Pérez-Pastor, A. Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees. Agric. Water Manag. 2013, 126, 133–141. [Google Scholar] [CrossRef]
- Conesa, M.R.; Torres, R.; Domingo, R.; Navarro, H.; Soto, F.; Pérez-Pastor, A. Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes. Agric. Water Manag. 2016, 172, 51–61. [Google Scholar] [CrossRef]
- Brunet, P.; Clément, R.; Bouvier, C. Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)—A case study in the Cevennes area, France. J. Hydrol. 2010, 380, 146–153. [Google Scholar] [CrossRef]
- Farzamian, M.; Monteiro Santos, F.A.; Khalil, M.A. Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. J. Appl. Geophys. 2015, 112, 175–189. [Google Scholar] [CrossRef]
- Michot, D.; Thomas, Z.; Adam, I. Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: A case study. Soil 2016, 2, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. Soil 2015, 1, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Alamry, A.S.; van der Meijdeb, M.; Noomenb, M.; Addinkc, E.A.; van Benthemc, R.; de Jong, S.M. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils. Catena 2017, 157, 388–396. [Google Scholar] [CrossRef]
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; Wiley-Blackwell: Oxford, UK, 2011; p. 712. [Google Scholar]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio, C.; Lillo, J.; Faz, A. Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area. Remote Sens. 2020, 12, 2042. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Least-square deconvolution of apparent resistivity pseudo-sections. Geophysics 1995, 60, 499–523. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys; Geotomo Software: George Town, Malaysia, 2004. [Google Scholar]
- IGME. Geological Map of Murcia Region Scale 1/200.000; IGME: Madrid, Spain, 2017. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No 106; ISRIC World Soil Information: Wageningen, The Netherlands, 2014; p. 203. [Google Scholar]
- Fereres, E.; Goldhamer, D.A. Suitability of stem diameter variations and waterpotential as indicators for irrigation scheduling of almond trees. J. Hortic. Sci. Biotechnol. 2003, 78, 139–144. [Google Scholar] [CrossRef]
- Seidel, K.; Lange, G. Direct current resistivity methods. In Environmental Geology, Handbook of Field Methods and Case Studies; Knödel, K., Lange, G., Voigt, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 205–238. [Google Scholar]
- Acosta, J.A.; Martínez-Pagán, P.; Martínez-Martínez, S.; Faz, A.; Zornoza, R.; Carmona, D.M. Assessment of environmental risk of reclaimed mining ponds using geophysics and geochemical techniques. J. Geochem. Explor. 2014, 147, 80–90. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pagán, P.; Faz, A.; Aracil, E.; Arocena, J.M. Electrical resistivity imaging revealed the spatial properties of mine tailing ponds in the Sierra Minera of Southeast Spain. J. Environ. Eng. Geophys. 2009, 14, 63–76. [Google Scholar] [CrossRef]
- Ernstson, K.; Kirsch, R. Geoelectrical methods. In Groundwater Geophysics; Reinhard, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 85–117. [Google Scholar]
- Obi, J.C. The Use of Electrical Resistivity Tomography (ERT) to Delineate Water-Filled near a Bridge Foundation Recommended Citation. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2012. [Google Scholar]
- Anderson, N.; Apel, D.; Ismail, A. Assessment of Karst Activity at Construction Sites Using the Electrical Resistivity Method (Greene and Jefferson Counties, Missouri); University of Missouri: Rolla, MO, USA, 2006. [Google Scholar]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Version No 2.0. USDA-NRCS. Soil Survey Investigations Report No 51; U.S. Government Publishing Office: Washington, DC, USA, 2014; p. 457.
- Duchaufour, P. Precis de Pedologie; Masson: Paris, France, 1970; p. 438. [Google Scholar]
- Hadzick, Z.Z.; Guber, A.K.; Pachepsky, Y.A.; Hill, R.L. Pedotransfer functions in soil electrical resistivity estimation. Geoderma 2011, 164, 195–202. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Cardoso, R.; Dias, A.S. Study of the electrical resistivity of compacted kaolin based on water potential. Eng. Geol. 2017, 226, 1–11. [Google Scholar] [CrossRef]
- Muñoz-Casteblanco, J.; Pereira, J.; Delage, P.; Cui, Y. The influence of changes in wáter content on the electrical resistivity of a natural unsaturated loess. ASTM Geotech. Test. J. 2012, 35, 11–17. [Google Scholar]
- Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M.T.; Consoli, S. Monitoring and modelling of soil–plant interactions: The joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 2015, 19, 2213–2225. [Google Scholar] [CrossRef] [Green Version]
- Giambastiani, Y.; Errico, A.; Preti, F.; Guastini, E.; Censini, G. Indirect root distribution characterization using electrical resistivity tomography in different soil conditions. Urban For. Urban Green. 2022, 67, 127442. [Google Scholar] [CrossRef]
- Pawlik, L.; Ksprzak, M. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT). Geomorphology 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Paglis, C. Application of electrical resistivity tomography for detecting root biomass in coffee trees. Int. J. Geophys. 2013, 2013, 383261. [Google Scholar] [CrossRef]
- De Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensor 2020, 20, 5313. [Google Scholar] [CrossRef]
Crops | ||||
---|---|---|---|---|
Soil Properties | Saturn Peach | Table Grape | Peach | Nectarine |
Bulk density (g cm−3) | 1.23 | 1.17 | 1.17 | 1.32 |
pH | 7.90 | 7.76 | 7.79 | 8.02 |
Electrical conductivity 1:5 (mS cm−1) | 3.42 | 2.43 | 4.56 | 1.34 |
Organic carbon (g kg−1) | 9.1 | 12.8 | 10.1 | 12.8 |
Total nitrogen (g kg−1) | 1.05 | 1.16 | 0.94 | 1.42 |
CaCO3 (%) | 43 | 46 | 33 | 56 |
Clay (%) | 10 | 15 | 16 | 13 |
Silt (%) | 56 | 56 | 24 | 59 |
Sand (%) | 34 | 29 | 60 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, J.A.; Gabarrón, M.; Martínez-Segura, M.; Martínez-Martínez, S.; Faz, Á.; Pérez-Pastor, A.; Gómez-López, M.D.; Zornoza, R. Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils. Sensors 2022, 22, 1365. https://doi.org/10.3390/s22041365
Acosta JA, Gabarrón M, Martínez-Segura M, Martínez-Martínez S, Faz Á, Pérez-Pastor A, Gómez-López MD, Zornoza R. Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils. Sensors. 2022; 22(4):1365. https://doi.org/10.3390/s22041365
Chicago/Turabian StyleAcosta, José A., María Gabarrón, Marcos Martínez-Segura, Silvia Martínez-Martínez, Ángel Faz, Alejandro Pérez-Pastor, María Dolores Gómez-López, and Raúl Zornoza. 2022. "Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils" Sensors 22, no. 4: 1365. https://doi.org/10.3390/s22041365
APA StyleAcosta, J. A., Gabarrón, M., Martínez-Segura, M., Martínez-Martínez, S., Faz, Á., Pérez-Pastor, A., Gómez-López, M. D., & Zornoza, R. (2022). Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils. Sensors, 22(4), 1365. https://doi.org/10.3390/s22041365