A Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination
Abstract
:1. Introduction
2. Fetal Acidosis
2.1. Blood pH and Acidosis
2.2. Current Fetal Acidosis Detection Method
2.2.1. Invasive Method
2.2.2. Non-Invasive Method
3. Magnetic Induction Spectroscopy (MIS)
3.1. MIS Theoretical Concept
3.2. Dielectric Spectrum of Biological Tissue
3.3. MIS in Various Application
3.4. Scalp Tissue Characteristics
3.5. Dielectric Properties of Scalp
4. Non-Invasive MIS Probe Design Specifications for Acidosis Detection
4.1. Types of Coil Structure
4.2. Coil Materials and Coil Core
4.3. Coil Turns and Diameter
4.4. Skin Effect
4.5. Lift-Off
4.6. Excitation Current and Frequency
5. Future Design of MIS Probe
5.1. Design Considerations
5.2. Coil Sensitivity
5.3. Coil Fabrication
5.4. MIS Probe Testing
5.5. Electronic Circuit
5.6. Analysis Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cummins, G.; Kremer, J.; Bernassau, A.; Brown, A.; Bridle, H.L.; Schulze, H.; Bachmann, T.T.; Crichton, M.; Denison, F.C.; Desmulliez, M.P.Y. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors 2018, 18, 2648. [Google Scholar] [CrossRef] [Green Version]
- Demaegd, H.M.I.; Bauters, E.G.R.; Page, G.H. Foetal scalp blood sampling and ST-analysis of the foetal ECG for intrapartum foetal monitoring: A restricted systematic review. Facts Views Vis. ObGyn 2020, 11, 337–346. [Google Scholar]
- Carbonne, B.; Pons, K.; Maisonneuve, E. Foetal scalp blood sampling during labour for pH and lactate measurements. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 30, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Opiyo, N.; Young, C.; Requejo, J.H.; Erdman, J.; Bales, S.; Betrán, A.P. Reducing unnecessary caesarean sections: Scoping review of financial and regulatory interventions. Reprod. Health 2020, 17, 133. [Google Scholar] [CrossRef]
- Popescu, M.R.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Peltecu, G.; Zagrean, A.-M. Getting an Early Start in Understanding Perinatal Asphyxia Impact on the Cardiovascular System. Front. Pediatr. 2020, 8, 68. [Google Scholar] [CrossRef]
- Zulkarnay, Z.; Shazwani, S.; Ibrahim, B.; Jurimah, A.J.; Ruzairi, A.R.; Zaridah, S. An overview on pH measurement technique and application in biomedical and industrial process. In Proceedings of the 2015 2nd International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 30–31 March 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Factors That Contribute to Normal Labor-The Three Ps. Available online: https://www.brainkart.com/article/Factors-That-Contribute-to-Normal-Labor---The-Three-Ps_25661/ (accessed on 10 August 2021).
- Gangurde, A.V.; Pagar, S.; Kadam, A.V.; Ghodke, R.S. Micro Controller Based Ph Meter using magnetic stirrer. IOSR J. Comput. Eng. (IOSR-JCE) 2016, 45–49. [Google Scholar]
- Prouhèze, A.; Girault, A.; Barrois, M.; Lepercq, J.; Goffinet, F.; Le Ray, C. Fetal scalp blood sampling: Do pH and lactates provide the same information? J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101964. [Google Scholar] [CrossRef]
- Pla, L.; Berdún, S.; Mir, M.; Rivas, L.; Miserere, S.; Dulay, S.; Samitier, J.; Eixarch, E.; Illa, M.; Gratacós, E. Non-invasive monitoring of pH and oxygen using miniaturized electrochemical sensors in an animal model of acute hypoxia. J. Transl. Med. 2021, 19, 53. [Google Scholar] [CrossRef]
- Ayres-De-Campos, D. Acute Fetal Hypoxia/Acidosis. In Obstetric Emergencies; Springer: Singapore, 2017; pp. 7–25. [Google Scholar] [CrossRef]
- Kelly, R.; Ramaiah, S.M.; Sheridan, H.; Cruickshank, H.; Rudnicka, M.; Kissack, C.; Becher, J.-C.; Stenson, B.J. Dose-dependent relationship between acidosis at birth and likelihood of death or cerebral palsy. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 103, F567–F572. [Google Scholar] [CrossRef] [Green Version]
- Abdulhay, E.W.; Oweis, R.J.; Alhaddad, A.M.; Sublaban, F.N.; Radwan, M.A. Non-Invasive Fetal Heart Rate Monitoring Techniques: Review Article. Biomed. Sci. Eng. 2014, 2, 53–67. [Google Scholar] [CrossRef]
- Gee, S.E.; Frey, H.A. Contractions: Traditional concepts and their role in modern obstetrics. Semin. Perinatol. 2020, 44, 151218. [Google Scholar] [CrossRef]
- Jakes, A.D.; Ali, M.; Lloyd, J. Fetal Scalp Blood Sampling. Found. Years J. 2017, 11, 77–81. Available online: https://www.researchgate.net/publication/318654298_Fetal_Scalp_Blood_Sampling (accessed on 10 March 2021).
- Fetal Capillary Blood pH (Fetal Blood Sampling). Available online: https://acutecaretesting.org/en/articles/fetal-capillary-blood-ph-fetal-blood-sampling (accessed on 10 March 2021).
- Queensland Clinical Guidelines. Maternity and Neonatal Clinical Guideline, Intrapartum Fetal Surveillance (IFS); Queensland Clinical Guidelines; Queensland Health: Herston, QLD, Australia, 2019; pp. 1–29.
- A.D.A.M. Medical Encyclopedia [Internet]. John D. Jacobson, David Zieve, A.D.A.M.; c1997-2022. Fetal Blood Testing; [updated 2022 Jan 12; reviewed 2020 Jan 7; cited 2022 Jan 19]. Available online: https://medlineplus.gov/ency/imagepages/9323.htm (accessed on 10 March 2021).
- Sarkawi, S.; Zakaria, Z.; Balkhis, I.; Jalil, J.A.; Rahim, M.A.A.; Rahiman, M.H.F.; Mustafa, N.; Rahim, R.A.; Shaffie, Z. 3D model simulation on magnetic induction spectroscopy for fetal acidosis detection using COMSOL multiphysics. AIP Conf. Proc. 2016, 1774, 050003. [Google Scholar] [CrossRef]
- Deans, A.; Coxon, S.; Kirkpatrick, A.; Coxon, S.; Jones, Z. Intrapartum Fetal Heart Monitoring Guideline. Frimley Health, NHS Foundation Trust. 2020. Available online: https://www.frimleyhealthandcare.org.uk/media/2178/fetal-monitoring-including-fetal-blood-sampling.pdf (accessed on 19 August 2021).
- Henderson, Z.; Ecker, J.L. Fetal Scalp Blood Sampling—Limited Role in Contemporary Obstetric Practice: Part I. Lab. Med. 2003, 34, 548–553. [Google Scholar] [CrossRef]
- Fetal Scalp Blood Sampling; Obstetrics and Gynaecology Clinical Practice Guideline WNHS, North Metropolitan Health Service Australia. 2021; pp. 1–5. Available online: https://www.kemh.health.wa.gov.au/~/media/HSPs/NMHS/Hospitals/WNHS/Documents/Clinical-guidelines/Obs-Gyn-Guidelines/Fetal-scalp-blood-sampling (accessed on 19 August 2021).
- Ancillary Tests. Available online: https://www.brainkart.com/article/Ancillary-Tests_25669/ (accessed on 10 August 2021).
- Blix, E.; Maude, R.; Hals, E.; Kisa, S.; Karlsen, E.; Nohr, E.A.; de Jonge, A.; Lindgren, H.; Downe, S.; Reinar, L.M.; et al. Intermittent auscultation fetal monitoring during labour: A systematic scoping review to identify methods, effects, and accuracy. PLoS ONE 2019, 14, e0219573. [Google Scholar] [CrossRef]
- History of Fetal Monitoring–Electronic Fetal Monitoring. Available online: http://www.ob-efm.com/efm-basics/history/ (accessed on 11 March 2021).
- East, C.E.; Begg, L.; Colditz, P.B.; Lau, R. Fetal pulse oximetry for fetal assessment in labour (Review). Cochrane Database Syst. Rev. 2014, 14, CD004075. [Google Scholar] [CrossRef] [Green Version]
- Fong, D.D.; Yamashiro, K.J.; Vali, K.; Galganski, L.A.; Thies, J.; Moeinzadeh, R.; Pivetti, C.; Knoesen, A.; Srinivasan, V.J.; Hedriana, H.L.; et al. Design and In Vivo Evaluation of a Non-Invasive Transabdominal Fetal Pulse Oximeter. IEEE Trans. Biomed. Eng. 2021, 68, 256–266. [Google Scholar] [CrossRef]
- Martinek, R.; Žídek, J. A System for Improving the Diagnostic Quality of Fetal Electrocardiogram. Prz. Elektrotechniczny 2012, 88, 164–173. [Google Scholar]
- Manuel, J. Complexity Sciences Applied to Cardiotocography; Faculty of Medicine, University of Porto: Porto, Portugal, 2020; pp. 1–89. Available online: https://repositorio-aberto.up.pt/handle/10216/132246 (accessed on 10 March 2021).
- Ekengård, F.; Cardell, M.; Herbst, A. Impaired validity of the new FIGO and Swedish CTG classification templates to identify fetal acidosis in the first stage of labor. J. Matern. Neonatal Med. 2021, 1–8. [Google Scholar] [CrossRef]
- Wu, W.; Wang, H.; Zhao, P.; Talcott, M.; Lai, S.; McKinstry, R.C.; Woodard, P.K.; Macones, G.A.; Schwartz, A.L.; Cahill, A.G.; et al. Noninvasive high-resolution electromyometrial imaging of uterine contractions in a translational sheep model. Sci. Transl. Med. 2019, 11, eaau1428. [Google Scholar] [CrossRef]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-Destructive Techniques Based on Eddy Current Testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [Green Version]
- Bera, T.K.; Maiti, T. Design and Development of a Low-Cost Magnetic Induction Spectroscopy (MIS) Instrumentation. J. Phys. Conf. Ser. 2020, 1495, 012003. [Google Scholar] [CrossRef]
- Lyons, S.; Wei, K.; Soleimani, M. Wideband precision phase detection for magnetic induction spectroscopy. Measurement 2018, 115, 45–51. [Google Scholar] [CrossRef]
- Tumanski, S. Induction coil sensors—A review. Meas. Sci. Technol. 2007, 18, R31–R46. [Google Scholar] [CrossRef]
- Zakaria, Z.; Rahim, R.A.; Mansor, M.S.B.; Yaacob, S.; Ayob, N.M.N.; Muji, S.Z.M.; Rahiman, M.H.F.; Aman, S.M.K.S. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography. Sensors 2012, 12, 7126–7156. [Google Scholar] [CrossRef] [Green Version]
- Marconato, N.; Cavazzana, R.; Bettini, P.; Rigoni, A. Accurate Magnetic Sensor System Integrated Design. Sensors 2020, 20, 2929. [Google Scholar] [CrossRef]
- Scharfetter, H.; Casañas, R.; Rosell, J. Biological tissue characterization by magnetic induction spectroscopy (MIS): Requirements and limitations. IEEE Trans. Biomed. Eng. 2003, 50, 870–880. [Google Scholar] [CrossRef]
- Xiang, J.; Dong, Y.; Zhang, M.; Li, Y. Design of a Magnetic Induction Tomography System by Gradiometer Coils for Conductive Fluid Imaging. IEEE Access 2019, 7, 56733–56744. [Google Scholar] [CrossRef]
- Griffiths, H. Magnetic induction tomography. Meas. Sci. Technol. 2001, 12, 1126–1131. [Google Scholar] [CrossRef]
- Zakaria, Z.; Yern, L.P.; Abdullah, A.A.; Rahim, R.A.; Mansor, M.S.B.; Ayob, N.M.N. Simulation study on size and location identification of tumors in liver tissue through eddy current distribution analysis. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012; pp. 602–604. [Google Scholar] [CrossRef] [Green Version]
- Nasir, N.; Al Ahmad, M. Cells Electrical Characterization: Dielectric Properties, Mixture, and Modeling Theories. J. Eng. 2020, 2020, 9475490. [Google Scholar] [CrossRef] [Green Version]
- Miklavčič, D.; Pavšel, N.; Hart, F.X. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2006; Volume 6, pp. 1–12. [Google Scholar] [CrossRef]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pethig, R. Dielectric Properties of Biological Materials: Biophysical and Medical Applications. IEEE Transactions on Electrical Insulation 1984, EI-19, 453–474. [Google Scholar] [CrossRef]
- Wang, X.; Lv, Y.; Chen, Y.; Yang, D. Optimization design of sensors for maximum primary field cancellation in biomedical magnetic induction tomography. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 602–605. [Google Scholar]
- O’Toole, M.D.; Karimian, N.; Peyton, A.J. Classification of Nonferrous Metals Using Magnetic Induction Spectroscopy. IEEE Trans. Ind. Inform. 2018, 14, 3477–3485. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, A.; Wendler, F.; Wertheim, R.; Kräusel, V.; Kanoun, O. Induction coil as sensor for contactless, continuous in-process determination of steel microstructure by means of Magnetic Induction Spectroscopy (MIS). CIRP J. Manuf. Sci. Technol. 2021, 33, 240–246. [Google Scholar] [CrossRef]
- Wu, T.; Brant, J.A. Magnetic Field Effects on pH and Electrical Conductivity: Implications for Water and Wastewater Treatment. Environ. Eng. Sci. 2020, 37, 717–727. [Google Scholar] [CrossRef]
- O’Toole, M.D.; Marsh, L.; Davidson, J.L.; Tan, Y.M.; Armitage, D.W.; Peyton, A.J. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement. Meas. Sci. Technol. 2015, 26, 035102. [Google Scholar] [CrossRef]
- Yan, Q.; Jin, G.; Ma, K.; Qin, M.; Zhuang, W.; Sun, J. Magnetic inductive phase shift: A new method to differentiate hemorrhagic stroke from ischemic stroke on rabbit. Biomed. Eng. Online 2017, 16, 63. [Google Scholar] [CrossRef] [Green Version]
- Amran, M.; Daud, R.; Zakaria, Z.; Hassan, M.A.; Omar, M.; Mat, F.; Basirom, I. Effect of electromagnetic induction spectroscopy of screw crack implant on electromagnetic signal strength. Mater. Today Proc. 2019, 16, 2153–2159. [Google Scholar] [CrossRef]
- Hang, J.A.; Sim, L.; Zakaria, Z. Non-invasive breast cancer assessment using magnetic induction spectroscopy technique. Int. J. Integr. Eng. 2017, 9, 54–60. [Google Scholar]
- Wang, J.-Y.; Healey, T.; Barker, A.; Brown, B.; Monk, C.; Anumba, D. Magnetic induction spectroscopy (MIS)—Probe design for cervical tissue measurements. Physiol. Meas. 2017, 38, 729–744. [Google Scholar] [CrossRef] [Green Version]
- McCann, H.; Pisano, G.; Beltrachini, L. Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr. Springer 2019, 32, 825–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 2009, 54, 4863–4878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Roula, M.A.; Dinsdale, R. Magnetic Induction Spectroscopy for Biomass Measurement: A Feasibility Study. Sensors 2019, 19, 2765. [Google Scholar] [CrossRef] [Green Version]
- Karli, R.; Ammor, H.; Terhzaz, J. Dosimetry in the human head for two types of mobile phone antennas at GSM frequencies. Open Eng. 2014, 4, 39–46. [Google Scholar] [CrossRef]
- Ma, S.; Sydanheimo, L.; Ukkonen, L.; Bjorninen, T. Split-Ring Resonator Antenna System with Cortical Implant and Head-Worn Parts for Effective Far-Field Implant Communications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 710–713. [Google Scholar] [CrossRef]
- Dutta, P.K.; Jayasree, P.V.Y.; Baba, V.S. SAR reduction in the modelled human head for the mobile phone using different material shields. Hum.-Cent. Comput. Inf. Sci. 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Salkim, E.; Shiraz, A.; Demosthenous, A. Impact of neuroanatomical variations and electrode orientation on stimulus current in a device for migraine: A computational study. J. Neural Eng. 2020, 17, 016006. [Google Scholar] [CrossRef]
- Dielectric Properties IT’IS Foundation. Available online: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/ (accessed on 10 August 2021).
- Dielectric Properties of Body Tissues: Output Data. Available online: http://niremf.ifac.cnr.it/tissprop/htmlclie/uniquery.php?func=stsffun&tiss=Blood&freq=2000000&outform=disphtm&tisname=on&frequen=on&conduct=on&permitt=on&losstan=on&wavelen=on&pendept=on&freq1=1000000&tissue2=Blood&frqbeg=1e6&frqend=10e6&mode=lin&linstep=10&logstep=1&tissue3=Blood&freq3=2000000 (accessed on 10 August 2021).
- Sarkawi, S.; Zakaria, Z.; Balkhis, I.; Abd Jalil, J. Non–invasive Fetal Scalp pH Measurement Utilizing Magnetic Induction Spectroscopy Technique. J. Telecommun. Electron. Comput. Eng. 2017, 9, 1–6. [Google Scholar]
- Bhargava, D.; Leeprechanon, N.; Rattanadecho, P.; Wessapan, T. Specific absorption rate and temperature elevation in the human head due to overexposure to mobile phone radiation with different usage patterns. Int. J. Heat Mass Transf. 2018, 130, 1178–1188. [Google Scholar] [CrossRef]
- Gibbs, R.; Moreton, G.; Meydan, T.; Williams, P. Comparison between Modelled and Measured Magnetic Field Scans of Different Planar Coil Topologies for Stress Sensor Applications. Sensors 2018, 18, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repelianto, A.S.; Kasai, N. The Improvement of Flaw Detection by the Configuration of Uniform Eddy Current Probes. Sensors 2019, 19, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulvr, M. Design of PCB search coils for AC magnetic flux density measurement. AIP Adv. 2018, 8, 047505. [Google Scholar] [CrossRef] [Green Version]
- Malmivuo, J.; Plonsey, R. Magnetoencephalography in Bioelectromagnetism- Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, UK, 1995; pp. 375–386. Available online: https://www.researchgate.net/publication/321025362_Bioelectromagnetism_14_Magnetoencephalography (accessed on 4 August 2021).
- Malmivuo, J. Comparison of the properties of EEG and EMG. Int. J. Bioelectromagn. 2004, 6, 1–11. Available online: http://www.ijbem.org/volume6/number1/1-11.htm (accessed on 4 August 2021).
- Hari, R.; Baillet, S.; Barnes, G.; Burgess, R.; Forss, N.; Gross, J.; Hämäläinen, M.; Jensen, O.; Kakigi, R.; Mauguière, F.; et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin. Neurophysiol. 2018, 129, 1720–1747. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhuang, Y.; Song, C.; Huang, Y.; Zhou, J. Dynamic Wireless Power Transfer System with an Extensible Charging Area Suitable for Moving Objects. IEEE Trans. Microw. Theory Tech. 2021, 69, 1896–1905. [Google Scholar] [CrossRef]
- Mirzaei, M.; Ripka, P. A Linear Eddy Current Speed Sensor with a Perpendicular Coils Configuration. IEEE Trans. Veh. Technol. 2021, 70, 3197–3207. [Google Scholar] [CrossRef]
- Halchenko, V.; Trembovetska, R.; Tychkov, V.V. Surface Eddy Current Probes: Excitation Systems of the Optimal Electromagnetic Field (Review). Devices Methods Meas. 2020, 11, 91–104. [Google Scholar] [CrossRef]
- Golestanirad, L.; Gale, J.T.; Manzoor, N.F.; Park, H.-J.; Glait, L.; Haer, F.; Kaltenbach, J.A.; Bonmassar, G. Solenoidal Micromagnetic Stimulation Enables Activation of Axons with Specific Orientation. Front. Physiol. 2018, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Ding, P.; Li, J.; Jiao, S.; Lin, J.; Dai, Y. Characteristics of Eddy Current Attenuation and Thickness Measurement of Metallic Plate. Chin. J. Mech. Eng. 2019, 32, 106. [Google Scholar] [CrossRef] [Green Version]
- Von Hebel, C.; Van Der Kruk, J.; Huisman, J.A.; Mester, A.; Altdorff, D.; Endres, A.L.; Zimmermann, E.; Garré, S.; Vereecken, H.; Hebel, V.; et al. Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data. Sensors 2019, 19, 4753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Soleimani, M. Magnetic induction tomography methods and applications: A review. Meas. Sci. Technol. 2017, 28, 072001. [Google Scholar] [CrossRef] [Green Version]
- Muttakin, I.; Soleimani, M. Magnetic Induction Tomography Spectroscopy for Structural and Functional Characterization in Metallic Materials. Materials 2020, 13, 2639. [Google Scholar] [CrossRef] [PubMed]
- Mola, G. Caring for PNG Women and Their Newborns: A Manual for Nurses and Community Health Workers in Papua New Guinea. Sterling Publishing in Conjuction with University of Papua New Guinea Press. 2018, Volume 3, pp. 1–210. Available online: https://www.researchgate.net/publication/329175171_Caring_for_PNG_women_and_their_newborns_a_manual_for_nurses_and_community_health_workers_in_Papua_New_Guinea (accessed on 29 August 2021).
- Industrial, Scientific and Medical (ISM) Equipment: Spectrum Management and Telecommunications Interference-Causing Equipment Standard. Innovation, Science and Economic Development Canada. 2020. Available online: https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf00018.html (accessed on 4 August 2021).
- Xu, Z.; Wang, X.; Deng, Y. Rotating Focused Field Eddy-Current Sensing for Arbitrary Orientation Defects Detection in Carbon Steel. Sensors 2020, 20, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunold, A.; Machts, R.; Haueisen, J. Head phantoms for bioelectromagnetic applications: A material study. Biomed. Eng. Online 2020, 19, 87. [Google Scholar] [CrossRef]
- Sun, J.; Jin, G.; Qin, M.; Wan, Z.; Wang, J.; Wang, C.; Guo, W.; Xu, L.; Ning, X.; Xu, J.; et al. Detection of acute cerebral hemorrhage in rabbits by magnetic induction. Braz. J. Med. Biol. Res. 2014, 47, 144–150. [Google Scholar] [CrossRef] [Green Version]
Measurands | Interpretation | |
---|---|---|
pH | Lactate | |
≥7.25 | ≤4.1 mmol/L | Normal |
7.21–7.24 | 4.2–4.8 mmol/L | Borderline |
≤7.20 | ≥4.9 mmol/L | Abnormal |
Type of Tissue | [59] | [60] | [61] | [62] |
---|---|---|---|---|
Skin | 2.0 | 2.0 | 1.0 | 2.8 |
Fat | 1.0 | 2.0 | 1.4 | 2.0 |
Muscle | 4.0 | 2.0 | - | 1.7 |
Skull | 10.0 | 5.2–8.5 | 6.6 | 5.5 |
Dura | 1.0 | 0.5 | - | - |
CSF | 2.0 | 4.9–7.9 | - | 1.5 |
Frequency (MHz) | εr Skin | σ Skin | εr Blood | σ Blood | εr Fat | σ Fat | εr Muscle | σ Muscle | εr Skull | σ Skull |
---|---|---|---|---|---|---|---|---|---|---|
1 | 9.91 × 102 | 1.32 × 10−2 | 3.03 × 103 | 8.22 × 10−1 | 5.08 × 101 | 4.41 × 10−2 | 1.84 × 103 | 5.03 × 10−1 | 2.49 × 102 | 9.04 × 10−2 |
2 | 8.58 × 102 | 3.71 × 10−2 | 1.68 × 103 | 9.26 × 10−1 | 4.64 × 101 | 4.48 × 10−2 | 8.26 × 102 | 5.48 × 10−1 | 1.85 × 102 | 9.71 × 10−2 |
3 | 7.46 × 102 | 6.31 × 10−2 | 1.08 × 103 | 9.83 × 10−1 | 4.36 × 101 | 4.56 × 10−2 | 5.22 × 102 | 5.68 × 10−1 | 1.48 × 102 | 1.03 × 10−1 |
4 | 6.54 × 102 | 8.82 × 10−2 | 7.73 × 102 | 1.02 × 10 | 4.11 × 101 | 4.66 × 10−2 | 3.85 × 102 | 5.81 × 10−1 | 1.25 × 102 | 1.07 × 10−1 |
5 | 5.79 × 102 | 1.11 × 10−1 | 5.96× 102 | 1.04 × 10 | 3.87 × 101 | 4.77 × 10−2 | 3.08 × 102 | 5.90 × 10−1 | 1.09 × 102 | 1.11 × 10−1 |
6 | 5.18 × 102 | 1.32 × 10−1 | 4.84× 102 | 1.06 × 10 | 3.66 × 101 | 4.88 × 10−2 | 2.60 × 102 | 5.97 × 10−1 | 9.71 × 101 | 1.14 × 10−1 |
7 | 4.68 × 102 | 1.51 × 10−1 | 4.07× 102 | 1.07 × 10 | 3.46 × 101 | 4.98 × 10−2 | 2.27 × 102 | 6.03 × 10−1 | 8.81 × 101 | 1.16 × 10−1 |
8 | 4.26 × 102 | 1.68 × 10−1 | 3.52× 102 | 1.08 × 10 | 3.27 × 101 | 5.08 × 10−2 | 2.03 × 102 | 6.08 × 10−1 | 8.11 × 101 | 1.19 × 10−1 |
9 | 3.91 × 102 | 1.83 × 10−1 | 3.11× 102 | 1.09 × 10 | 3.11 × 101 | 5.17 × 10−2 | 1.85 × 102 | 6.13 × 10−1 | 7.54 × 101 | 1.21 × 10−1 |
10 | 3.62 × 102 | 1.97 × 10−1 | 2.80× 102 | 1.10 × 10 | 2.96 × 101 | 5.26 × 10−2 | 1.71 × 102 | 6.17 × 10−1 | 7.08 × 101 | 1.23 × 10−1 |
Types of Tissues | Adult | 7 Years Old | ||
---|---|---|---|---|
εr | σ (s/m) | εr | σ (s/m) | |
Skin | 41.41 | 0.87 | 42.47 | 0.89 |
Fat | 11.33 | 0.11 | 12.29 | 0.12 |
Bone | 20.79 | 0.34 | 21.97 | 0.36 |
Brain | 45.80 | 0.76 | 46.75 | 0.78 |
Eyes | 36.59 | 0.51 | 49.60 | 0.99 |
Parameter | Functionality |
---|---|
Dimension | Probe diameter ≤ 1 cm should affix the cervix as it dilates from 1–10 cm. Probe length ≈ 10 cm in order to reach the fetal scalp located 2–3 cm [54] from the cervix opening before it dilates to allow fetus to move through the vagina during term. |
Biocompatibility | Materials used should be biocompatible, e.g., ABS/Silicon [43]. Any chemical sensing must be affixed to ensure they are always attached to the sensor surface. Any chemicals used for sensing must be affixed in a way to ensure that they do not separate from the sensor surface. The probe materials must not degrade during sterilization |
Accuracy and functionality | Electromagnetic compatibility (EMC) or no interference to other existing devices (e.g., CTG) Device should accomplish a continuous sampling rate <5 min interval and minimum 12 h measurement of measurands. Able to maintain pH reading with presence of: Vaginal secretions (pH 3.8–4.5); Amniotic fluid (pH 7.1–7.3); Various scalp tissue layers including skin, blood, fat, muscle, and skull with different conductivity and thickness; Variation in tissue layers properties for different fetuses; Temperature 35–42 °C; Fetus movement. |
Safe operation of medical equipment | Comply the latest standard IEC 60601-1 (4th Edition) for extensive use in different global regions. 2nd Edition: Categories of increasing severity: Type B equipment 3rd Edition: Means of protection (MOP): Double isolation. Analyzing risk: Risk Management Process described in ISO 14971 Edition 3.1: Addressing 3rd Edition Ambiguities. 4th Edition: Electromagnetic disturbance (EMC concerns, IEC 60601-1-2). Intended used environments: Professional healthcare facilities. Current ≤1 A comply with FDA for medical devices. Leakage currents below 500 µA. Frequency ≤10 MHz is most suitable as indicated by Industrial, Scientific, and Medical (ISM) frequency bands [82]. Low Power. Patient vicinity, distance to the scalp (1–5 cm). Lift-off for short range wireless medical devices. Exposure time (1–2 s). |
Coil design | Type of coil circular/square. Material copper/gold nanoparticle. Number of turns ratio, N for Tx < 2Rx. Specify inner and outer diameter of Tx and Rx coil. Specify distance between Tx-Rx coil. Arrangement of Tx-Rx coil; planar/gradiometer/perpendicular. Excitation using single/multifrequency. |
pH | 6.5 | 6.6 | 6.7 | 6.8 | 6.9 | 7.0 | 7.1 | 7.2 | 7.3 | 7.4 |
σ (S/m) | 1.9 | 1.8 | 1.7 | 1.6 | 1.5 | 1.4 | 1.3 | 1.2 | 1.1 | 1.0 |
Nomenclature | Referred to | Nomenclature | Referred to |
---|---|---|---|
B | Magnetic Field Density | Rx | Receiver coil |
C | Capacitance | SNR | Signal to Noise Ratio |
CTG | Cardiotocography | Tx | Excitation coil |
EC | Eddy Current | V | Voltage |
ECG | Electrocardiogram | H+ | Hydrogen ion |
EMF | Electromotive Force | CO2 | Carbon dioxide |
FBS | Fetal Blood Sampling | H2CO3 | Carbonic acid |
FHR | Fetal Heart Rate | HCO3− | Bicarbonate ion |
H | Magnetic Field Strength | ε | Permittivity |
MIS | Magnetic Induction Spectroscopy | σ | Conductivity |
NaCl | Sodium Chloride | μ | Permeability |
PCB | Printed Circuit Board | ϕ | Magnetic flux |
R | Resistance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Halim, S.F.; Zakaria, Z.; Pusppanathan, J.; Mohd Noor, A.; Norali, A.N.; Fazalul Rahiman, M.H.; Mohd Muji, S.Z.; Abdul Rahim, R.; Engku-Husna, E.I.; Ali Hassan, M.K.; et al. A Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination. Sensors 2022, 22, 1334. https://doi.org/10.3390/s22041334
Abdul Halim SF, Zakaria Z, Pusppanathan J, Mohd Noor A, Norali AN, Fazalul Rahiman MH, Mohd Muji SZ, Abdul Rahim R, Engku-Husna EI, Ali Hassan MK, et al. A Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination. Sensors. 2022; 22(4):1334. https://doi.org/10.3390/s22041334
Chicago/Turabian StyleAbdul Halim, Siti Fatimah, Zulkarnay Zakaria, Jaysuman Pusppanathan, Anas Mohd Noor, Ahmad Nasrul Norali, Mohd Hafiz Fazalul Rahiman, Siti Zarina Mohd Muji, Ruzairi Abdul Rahim, Engku Ismail Engku-Husna, Muhamad Khairul Ali Hassan, and et al. 2022. "A Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination" Sensors 22, no. 4: 1334. https://doi.org/10.3390/s22041334
APA StyleAbdul Halim, S. F., Zakaria, Z., Pusppanathan, J., Mohd Noor, A., Norali, A. N., Fazalul Rahiman, M. H., Mohd Muji, S. Z., Abdul Rahim, R., Engku-Husna, E. I., Ali Hassan, M. K., Aziz Safar, M. J., Salleh, A. F., & Mat Som, M. H. (2022). A Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination. Sensors, 22(4), 1334. https://doi.org/10.3390/s22041334