Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy
Abstract
:1. Introduction
2. Metasurface Design, Simulations, and Experimental Setup
2.1. Metamaterial Design and Simulations
2.2. Experimental Setup
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.D.; Chuwers, P.; Levy, Y.; Gordon, M.; Grauer, F.; Marzouk, J.; Levy, S.; Barron, S.; Gruener, N. Health effects from exposure to organophosphate pesticides in workers and residents in Israel. Isr. J. Med. Sci. 1992, 28, 584–598. [Google Scholar] [PubMed]
- Fleet, B.; Little, C. Design and evaluation of electrochemical detectors for HPLC. J. Chromatogr. Sci. 1974, 12, 747–752. [Google Scholar] [CrossRef]
- Thurman, E.M.; Meyer, M.; Pomes, M.; Perry, C.A.; Schwab, A.P. Enzyme-linked immunosorbent assay compared with gas chromatography/mass spectrometry for the determination of triazine herbicides in water. Anal. Chem. 1990, 62, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Nagyová, S.; Tölgyessy, P. Validation including uncertainty estimation of a GC–MS/MS method for determination of selected halogenated priority substances in fish using rapid and efficient lipid removing sample preparation. Foods 2019, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Ndagire, C.T.; Muyonga, J.H.; Isabirye, D.; Odur, B.; Somda, S.M.A.; Bukenya, R.; Andrade, J.; Nakimbugwe, D. Assessing the reliability of FTIR spectroscopy measurements and validity of bioelectrical impedance analysis as a surrogate measure of body composition among children and adolescents aged 8–19 years attending schools in Kampala, Uganda. BMC Public Health 2018, 18, 687. [Google Scholar] [CrossRef]
- Shulzinger, A.; Abramovich, A.; Farber, E. Attenuated Total Reflectance (ATR)-FTIR spectral measurements in MIR and FIR (THz) range. In Proceedings of the 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Tel Aviv, Israel, 9–11 November 2009; pp. 1–3. [Google Scholar]
- Krasnok, A.; Baranov, D.; Li, H.; Miri, M.-A.; Monticone, F.; Alú, A. Anomalies in light scattering. Adv. Opt. Photonics 2019, 11, 892–951. [Google Scholar] [CrossRef] [Green Version]
- Asadchy, V.S.; Faniayeu, I.A.; Ra’di, Y.; Khakhomov, S.; Semchenko, I.; Tretyakov, S.A. Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption. Phys. Rev. X 2015, 5, 031005. [Google Scholar] [CrossRef]
- Janotta, M.; Karlowatz, M.; Vogt, F.; Mizaikoff, B. Sol–gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution. Anal. Chim. Acta 2003, 496, 339–348. [Google Scholar] [CrossRef]
- Abramovich, A.; Shulzinger, A.; Ochana, M.; Rotshild, D. Metal Nano Layer Coating for Improving the Detection and Recognition of Micro-Poisons Using Reflection Spectroscopic Measurement. Opt. Photonics J. 2015, 5, 193. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.F.; Smith, D.R.; del Hougne, P. Perfect absorption in a metasurface-programmable complex scattering enclosure. arXiv 2003, arXiv:2003.01766. [Google Scholar]
- Islam, K.M.R.; Choi, S. Compact Double-Layer FR4-Based Focusing Lens Using High-Efficiency Huygens’ Metasurface Unit Cells. Sensors 2020, 20, 6142. [Google Scholar] [CrossRef] [PubMed]
- Sol, J.; Smith, D.R.; del Hougne, P. Meta-Programmable Analog Differentiator Advanced Materials 24 September 2020. arXiv 2020, arXiv:2108.06178. [Google Scholar]
- Imani, M.F.; Smith, D.R.; del Hougne, P. Perfect Absorption in a Disordered Medium with Programmable Meta-Atom Inclusions. Adv. Funct. Mater. 2020, 30, 2005310. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, J.T.; Choi, S.J.; Kim, H.S.; Park, W.K.; Han, S.T.; Park, J.Y.; Lee, S.; Kim, D.S.; Ahn, Y.H. Detection of microorganisms using terahertz metamaterials. Sci. Rep. 2014, 4, 4988. [Google Scholar] [CrossRef] [PubMed]
- Baena, J.D.; Bonache, J.; Martin, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.; Garcia-Garcia, J.; Gil, I.; Portillo, M.; et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Dolling, G.; Enkrich, C.; Wegener, M.; Zhou, J.; Soukoulis, C.M.; Linden, S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 2005, 30, 3198–3200. [Google Scholar] [CrossRef]
- Sydoruk, O.; Tatartschuk, E.; Shamonina, E.A.; Solymar, L. Analytical formulation for the resonant frequency of split rings. J. Appl. Phys. 2009, 105, 014903. [Google Scholar] [CrossRef]
- Stanze, D.; Deninger, A.; Roggenbuck, A.; Schindler, S.; Schlak, M.; Sartorius, B. Compact cw terahertz spectrometer pumped at 1.5 μm wavelength. J. Infrared Millim. Terahertz Waves 2011, 32, 225–232. [Google Scholar] [CrossRef] [Green Version]
- CST Studio Suite. CST of America. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-s (accessed on 1 February 2022).
- Huang, D.; Liao, F.; Molesa, S.; Redinger, D.; Subramanian, V. Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 2003, 150, G412. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef] [PubMed]
- Allec, N.; Choi, M.; Yesupriya, N.; Szychowski, B.; White, M.; Kann, M.G.; Garcin, E.; Daniel, M.-C.; Badano, A. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept. Sci. Rep. 2015, 5, 12085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roggenbuck, A.; Schmitz, H.; Deninger, A.; Mayorga, I.C.; Hemberger, J.; Güsten, R.; Grüninger, M. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J. Phys. 2010, 12, 043017. [Google Scholar] [CrossRef]
- Yang, K.; Yu, W.; Huang, G.; Zhou, J.; Yang, X.; Fu, W. Highly sensitive detection of Staphylococcus aureus by a THz metamaterial biosensor based on gold nanoparticles and rolling circle amplification. RSC Adv. 2020, 10, 26824–26833. [Google Scholar] [CrossRef]
- Martines-Arano, H.; García-Pérez, B.E.; Vidales-Hurtado, M.A.; Trejo-Valdez, M.; Hernández-Gómez, L.H.; Torres-Torres, C. Chaotic signatures exhibited by plasmonic effects in au nanoparticles with cells. Sensors 2019, 19, 4728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Description | Value (mm) |
---|---|---|
a | Unit cell length | 1.6 |
b | Unit cell width | 0.6 |
l | DSRR length | 0.5 |
w | DSRR half width | 0.25 |
c | DSRR strip width | 0.1 |
s | DSRR gap | 0.1 |
g | CW width | 0.2 |
h | CW length | 1.2 |
t | FR4 substrate thickness | 0.1 |
d | Copper thickness | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramovich, A.; Azoulay, Y.; Rotshild, D. Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy. Sensors 2022, 22, 1279. https://doi.org/10.3390/s22031279
Abramovich A, Azoulay Y, Rotshild D. Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy. Sensors. 2022; 22(3):1279. https://doi.org/10.3390/s22031279
Chicago/Turabian StyleAbramovich, Amir, Yossi Azoulay, and David Rotshild. 2022. "Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy" Sensors 22, no. 3: 1279. https://doi.org/10.3390/s22031279
APA StyleAbramovich, A., Azoulay, Y., & Rotshild, D. (2022). Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy. Sensors, 22(3), 1279. https://doi.org/10.3390/s22031279