Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow
Abstract
:1. Introduction
2. Data Acquisition and Processing
2.1. Flow Loop Testing Facility
2.2. DAS Data Processing
2.3. Workflow for Estimating Taylor Bubble Velocity and Size
3. Results
3.1. Influence of Taylor Bubble Size on DAS Response
3.2. Multiple Taylor Bubbles DAS Response in a Stagnant Water Column
3.3. Influence of Water Velocity on DAS Response
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrianov, N. A Machine Learning Approach for Virtual Flow Metering and Forecasting. IFAC-Pap. 2018, 51, 191–196. [Google Scholar] [CrossRef]
- Bikmukhametov, T.; Jäschke, J. First Principles and Machine Learning Virtual Flow Metering: A Literature Review. J. Pet. Sci. Eng. 2020, 184, 106487. [Google Scholar] [CrossRef]
- Arief, H.A.; Wiktorski, T.; Thomas, P.J. A Survey on Distributed Fibre Optic Sensor Data Modelling Techniques and Machine Learning Algorithms for Multiphase Fluid Flow Estimation. Sensors 2021, 21, 2801. [Google Scholar] [CrossRef] [PubMed]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Mateeva, A.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Lopez, J.; Grandi, S.; Hornman, K.; Lumens, P.; Franzen, A. Advances in Distributed Acoustic Sensing (DAS) for VSP. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Tulsa, OK, USA, 2012; pp. 1–5. [Google Scholar]
- Jin, G.; Roy, B. Hydraulic-Fracture Geometry Characterization Using Low-Frequency DAS Signal. Lead. Edge 2017, 36, 975–980. [Google Scholar] [CrossRef]
- Paleja, R.; Mustafina, D.; Park, T.; Randell, D.; van der Horst, J.; Crickmore, R. Velocity Tracking for Flow Monitoring and Production Profiling Using Distributed Acoustic Sensing. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar]
- Becker, M.; Coleman, T.; Ciervo, C.; Cole, M.; Mondanos, M. Fluid Pressure Sensing with Fiber-Optic Distributed Acoustic Sensing. Lead. Edge 2017, 36, 1018–1023. [Google Scholar] [CrossRef]
- Lima, S.E.; Frazão, O.; Farias, R.G.; Araujo, F.M.; Ferreira, L.A.; Santos, J.L.; Miranda, V. Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—A Proof of Concept. IEEE Trans. Power Deliv. 2010, 25, 2526–2534. [Google Scholar] [CrossRef]
- Finfer, D.; Parker, T.R.; Mahue, V.; Amir, M.; Farhadiroushan, M.; Shatalin, S. Non-Intrusive Multiple Zone Distributed Acoustic Sensor Flow Metering. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar]
- Naldrett, G.; Cerrahoglu, C.; Mahue, V. Production Monitoring Using Next-Generation Distributed Sensing Systems. Petrophys.-SPWLA J. Form. Eval. Reserv. Descr. 2018, 59, 496–510. [Google Scholar] [CrossRef]
- Jin, G.; Friehauf, K.; Roy, B.; Constantine, J.J.; Swan, H.W.; Krueger, K.R.; Raterman, K.T. Fiber Optic Sensing-Based Production Logging Methods for Low-Rate Oil Producers. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 22–24 July 2019; pp. 1183–1199. [Google Scholar]
- Titov, A.; Fan, Y.; Jin, G.; Tura, A.; Kutun, K.; Miskimins, J. Experimental Investigation of Distributed Acoustic Fiber-Optic Sensing in Production Logging: Thermal Slug Tracking and Multiphase Flow Characterization. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual. 26–29 October 2020. [Google Scholar]
- Davies, R.M.; Taylor, G.I. The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1950, 200, 375–390. [Google Scholar]
- Taitel, Y.; Barnea, D. Two-Phase Slug Flow. In Advances in heat transfer; Elsevier: Amsterdam, The Netherlands, 1990; Volume 20, pp. 83–132. [Google Scholar]
- Massoud, E.Z.; Xiao, Q.; El-Gamal, H.A.; Teamah, M.A. Numerical Study of an Individual Taylor Bubble Rising through Stagnant Liquids under Laminar Flow Regime. Ocean Eng. 2018, 162, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Issa, N.; Roelens, M.; Frisken, S. Distributed Optical Sensing Systems and Methods. PCT Patent Application PCT/AU2018/050775, 26 July 2018. [Google Scholar]
- Sidenko, E.; Bona, A.; Pevzner, R.; Issa, N.; Tertyshnikov, K. Influence of Interrogators’ Design on DAS Directional Sensitivity. In EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2020; pp. 1–5. [Google Scholar]
- Yang, J.; Shragge, J.; Jin, G. 4D DAS Fiber-Coupling Effects in Freezing near-Surface Ground Conditions. In SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2021; pp. 477–482. [Google Scholar]
- Ambrose, S.; Lowndes, I.S.; Hargreaves, D.M.; Azzopardi, B. Numerical Modelling of the Rise of Taylor Bubbles through a Change in Pipe Diameter. Comput. Fluids 2017, 148, 10–25. [Google Scholar] [CrossRef]
- Nicklin, D.J. Two-Phase Bubble Flow. Chem. Eng. Sci. 1962, 17, 693–702. [Google Scholar] [CrossRef]
- Pinto, A.; Pinheiro, M.C.; Campos, J.B.L. On the Interaction of Taylor Bubbles Rising in Two-Phase Co-Current Slug Flow in Vertical Columns: Turbulent Wakes. Exp. Fluids 2001, 31, 643–652. [Google Scholar] [CrossRef]
- Liu, Y.; Upchurch, E.R.; Ozbayoglu, E.M. Experimental Study of Single Taylor Bubble Rising in Stagnant and Downward Flowing Non-Newtonian Fluids in Inclined Pipes. Energies 2021, 14, 578. [Google Scholar] [CrossRef]
- Finfer, D. Flotation Process Metering of Concentrate, Slurry, Air and Water Flows Using Non-Intrusive Fibre-Optic Sensing. In Proceedings of the Copper Cobalt Africa, 9th Southern African Base Metals Conference, Livingstone, Zambia, 9–12 July 2018; pp. 181–191. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titov, A.; Fan, Y.; Kutun, K.; Jin, G. Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow. Sensors 2022, 22, 1266. https://doi.org/10.3390/s22031266
Titov A, Fan Y, Kutun K, Jin G. Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow. Sensors. 2022; 22(3):1266. https://doi.org/10.3390/s22031266
Chicago/Turabian StyleTitov, Aleksei, Yilin Fan, Kagan Kutun, and Ge Jin. 2022. "Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow" Sensors 22, no. 3: 1266. https://doi.org/10.3390/s22031266
APA StyleTitov, A., Fan, Y., Kutun, K., & Jin, G. (2022). Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow. Sensors, 22(3), 1266. https://doi.org/10.3390/s22031266