Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Method
3. Results
3.1. Comparative Analysis over Observation Networks
3.2. Overall and Detailed Comparative Analysis at Different Time Scales
3.3. Performance over Land Cover Types at Monthly Scales
3.4. Data Quality Analysis
4. Discussion
4.1. Applicability of Soil Moisture Products over Different Observation Networks
4.2. Performance Comparison of Various Soil Moisture Products
4.3. Applicability for Evaluation of Soil Moisture Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Name |
AMSR2 | Advanced Microwave Scanning Radiometer 2 |
AMSR_AVG | AMSR2 average product |
AMSR_AS | AMSR2 ascending product |
AMSR_DE | AMSR2 descending product |
CCI | Climate Change Initiative |
ESA | European Space Agency |
GPS | Global Positioning System |
ISMN | International Soil Moisture Network |
LPRM | Land Parameter Retrieval Model |
NASA | National Aeronautics and Space Administration |
SMAP | Soil Moisture Active Passive |
Indicators | |
PBIAS | Percentage of BIAS |
R | Pearson Correlation Coefficient |
RMSE | Root Mean Square Error |
ubRMSE | unbiased Root Mean Square Error |
MAE | Mean Absolute Error |
MBE | Mean Bias Error |
Observation networks | |
ARM | Atmospheric Radiation Measurement network |
FLUXNET-AMERIFLUX | AmeriFlux FLUXNET |
PBO_H2O | PBO_H2O network |
SOILSCAPE | Soil Moisture Sensing Controller And oPtimal Estimator |
USCRN | U.S. Climate Reference Network |
iRON | Interactive Roaring Fork Observation Network |
Appendix A
Classification Used in the Study | IGBP Classification from MCD12Q1 |
---|---|
forests | Evergreen Needleleaf Forests |
Evergreen Broadleaf Forests | |
Deciduous Broadleaf Forests | |
Mixed Forests | |
grasslands and shrublands | Closed Shrublands |
Open Shrublands | |
Grasslands | |
Croplands | |
Cropland/Natural Vegetation Mo-saics | |
savannas | Woody Savannas |
Savannas | |
barren and sparse vegetation | Urban and Built-up Lands |
Barren |
References
- He, T.; Wang, J.; Cheng, Y.; Lin, Z. Spectral features of soil moisture. Acta Pedol. Sin. 2006, 43, 1027–1032. [Google Scholar] [CrossRef]
- Pan, N.; Wang, S.; Liu, Y.; Zhao, W.; Fu, B. Advances in soil moisture retrieval from remote sensing. Acta Ecol. Sin. 2019, 39, 4615–4626. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lyu, H.; Wang, L.; Yang, B. Spatial-temporal characteristics of soil moisture in China. Acta Geogr. Sin. 2016, 71, 1494–1508. [Google Scholar] [CrossRef]
- Wu, X.; Na, X.; Zang, S. Application of temperature vegetation dryness index in the estimation of soil moisture of the Songnen Plain. Acta Ecol. Sin. 2019, 39, 4432–4441. [Google Scholar] [CrossRef]
- Zhou, H.; Geng, G.; Yang, J.; Hu, H.; Sheng, L.; Lou, W. Improving Soil Moisture Estimation via Assimilation of Remote Sensing Product into the DSSAT Crop Model and Its Effect on Agricultural Drought Monitoring. Remote Sens. 2022, 14, 3187. [Google Scholar] [CrossRef]
- Farokhi, M.; Faridani, F.; Lasaponara, R.; Ansari, H.; Faridhosseini, A. Enhanced Estimation of Root Zone Soil Moisture at 1 Km Resolution Using SMAR Model and MODIS-Based Downscaled AMSR2 Soil Moisture Data. Sensors 2021, 21, 5211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yuan, Q.; Li, J.; Wang, Y.; Sun, F.; Zhang, L. Generating Seamless Global Daily AMSR2 Soil Moisture (SGD-SM) Long-Term Products for the Years 2013–2019. Earth Syst. Sci. Data 2021, 13, 1385–1401. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.-P.; Dorigo, W.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.; Fan, L.; et al. Assessment and Inter-Comparison of Recently Developed/Reprocessed Microwave Satellite Soil Moisture Products Using ISMN Ground-Based Measurements. Remote Sens. Environ. 2019, 224, 289–303. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, Q.; Shi, P.; Sun, P.; Yu, H. Evaluation of remote sensing and reanalysis soil moisture products on the Tibetan Plateau. Acta Geogr. Sin. 2018, 73, 1778–1791. [Google Scholar] [CrossRef]
- Meng, X.; Mao, K.; Meng, F.; Shen, X.; Xu, T.; Cao, M. Long-Term Spatiotemporal Variations in Soil Moisture in North East China Based on 1-Km Resolution Downscaled Passive Microwave Soil Moisture Products. Sensors 2019, 19, 3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Zhao, H.; Huang, Y.; Liu, S.; Ma, Z.; Jiang, Y.; Zhang, W.; Zhao, C. Generating Daily Soil Moisture at 16 m Spatial Resolution Using a Spatiotemporal Fusion Model and Modified Perpendicular Drought Index. Sensors 2022, 22, 5366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Becker-Reshef, I.; Justice, C. Evaluation of the ASCAT Surface Soil Moisture Product for Agricultural Drought Monitoring in USA. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Milan, Italy; pp. 669–672. [Google Scholar]
- Suman, S.; Srivastava, P.K.; Petropoulos, G.P.; Pandey, D.K.; O’Neill, P.E. Appraisal of SMAP Operational Soil Moisture Product from a Global Perspective. Remote Sens. 2020, 12, 1977. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 Soil Moisture Retrievals against Observations from Two Networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-Scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products Using Triple Collocation. Remote Sens. Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.; Jones, L.A.; Kimball, J.S.; et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using in Situ Measurements. J. Hydrometeorol. 2017, 18, 2621–2645. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Entekhabi, D.; Gianotti, D.J.S.; Yang, K.; Luo, C.; Feldman, A.F.; Wang, W.; Jiang, R. Satellite-Based Assessment of Meteorological and Agricultural Drought in Mainland Southeast Asia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6180–6189. [Google Scholar] [CrossRef]
- Peng, J.; Muller, J.-P.; Blessing, S.; Giering, R.; Danne, O.; Gobron, N.; Kharbouche, S.; Ludwig, R.; Müller, B.; Leng, G.; et al. Can We Use Satellite-Based FAPAR to Detect Drought? Sensors 2019, 19, 3662. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; AghaKouchak, A. A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Asong, Z.E.; Wheater, H.S.; Bonsal, B.; Razavi, S.; Kurkute, S. Historical Drought Patterns over Canada and Their Teleconnections with Large-Scale Climate Signals. Hydrol. Earth Syst. Sci. 2018, 22, 3105–3124. [Google Scholar] [CrossRef]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought Monitoring with Soil Moisture Active Passive (SMAP) Measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Yue, X. Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements. Remote Sens. 2018, 10, 1161. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Gruber, A.; Van, O.P.; Wagner, W.; Drusch, M.; Mecklenburg, S.; Robock, A.; Jcakson, T. The International Soil Moisture Network—An observational network for soil moisture product validations. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Remote Sensing and Photogrammetry Society, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A Data Hosting Facility for Global in Situ Soil Moisture Measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth System Science for over a Decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B Microwave Active-Passive High Resolution Surface Soil Moisture Product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Preimesberger, W.; Scanlon, T.; Su, C.-H.; Gruber, A.; Dorigo, W. Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2845–2862. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture Climate Data Records and Their Underlying Merging Methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Tong, C.; Liu, W.; Du, B. Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors 2019, 19, 2718. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor Historical Climatology of Satellite-Derived Global Land Surface Moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.Y.; Johnson, F.M.; Parinussa, R.M.; Sharma, A. A Global Comparison of Alternate AMSR2 Soil Moisture Products: Why Do They Differ? Remote Sens. Environ. 2015, 161, 43–62. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land Surface Temperature from Ka Band (37 GHz) Passive Microwave Observations. J. Geophys. Res. 2009, 114, D04113. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite Surface Soil Moisture from SMAP, SMOS, AMSR2 and ESA CCI: A Comprehensive Assessment Using Global Ground-Based Observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.-S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sens. 2017, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Zhu, Z.; Chai, L.; Liu, S.; Montzka, C.; Liu, J.; Yang, X.; Lu, Z.; Jin, R.; Li, X.; et al. Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Zhang, Z.; Ren, H. Evaluation of Four Bias Correction Methods and Random Forest Model for Climate Change Projection in the Mara River Basin, East Africa. J. Water Clim. Change 2022, 13, 1900–1919. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance Metrics for Soil Moisture Retrievals and Application Requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Hu, S.; Cao, M.; Qiu, H.; Song, J.; Wu, J.; Gao, Y.; Li, J.; Sun, K. Applicability evaluation of CFSR climate data for hydrologic simulation: A case study in the Bahe River Basin. Acta Geogr. Sin. 2016, 71, 1571–1587. [Google Scholar] [CrossRef]
- Wu, X.; Wang, G.; Yao, R.; Wang, L.; Yu, D.; Gui, X. Investigating Surface Urban Heat Islands in South America Based on MODIS Data from 2003–2016. Remote Sens. 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Shew, B.; Zaman, S.; Lee, J.; Zhi, Y. Assessment of SMAP and ESA CCI Soil Moisture Over the Great Lakes Basin. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020; IEEE: Waikoloa, HI, USA; pp. 4590–4593. [Google Scholar]
- Xu, X.; Frey, S. Validation of SMOS, SMAP, and ESA CCI Soil Moisture Over a Humid Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10784–10793. [Google Scholar] [CrossRef]
- Wu, X.; Lu, G.; Wu, Z.; He, H.; Scanlon, T.; Dorigo, W. Triple Collocation-Based Assessment of Satellite Soil Moisture Products with in Situ Measurements in China: Understanding the Error Sources. Remote Sens. 2020, 12, 2275. [Google Scholar] [CrossRef]
Products | Active or Passive | Frequency | Generating Methods |
---|---|---|---|
SMAP | Active–Passive | L-band radiometer and C-band radar | Baseline SMAP-Sentinel1 Active–Passive algorithm |
AMSR2 | Active | C- and X-band radiometers | LPRM algorithm |
ESA CCI | Active–Passive | / | ESA CCI SM Merging algorithm |
Network | Forests | Grasslands and Shrublands | Savannas | Barren and Sparse Vegetation | Others |
---|---|---|---|---|---|
ARM | 0 | 16 | 1 | 0 | 0 |
FLUXNET-AMERIFLUX | 0 | 0 | 0 | 0 | 1 |
PBO_H2O | 2 | 113 | 5 | 14 | 1 |
SOILSCAPE | 0 | 53 | 35 | 0 | 0 |
USCRN | 10 | 66 | 30 | 5 | 1 |
iRON | 0 | 3 | 5 | 1 | 0 |
Network | SMAP | ESA CCI | AMSR_AVG | AMSR_AS | AMSR_DE |
---|---|---|---|---|---|
ARM | 0.0816 | −0.0894 | −0.2114 | −0.1096 | −0.3132 |
FLUXNET-AMERIFLUX | / | / | −0.2940 | −0.3176 | −0.2703 |
PBO_H2O | 0.1110 | −0.3201 | −0.1321 | −0.0001 | −0.2642 |
SOILSCAPE | −0.3245 | −0.3423 | −0.3405 | −0.2212 | −0.4599 |
USCRN | −0.2514 | −0.2492 | −0.4851 | −0.2843 | −0.6860 |
iRON | 0.2756 | −0.1022 | −0.5437 | −0.8389 | −0.2485 |
Network | R | RMSE (m3/m3) | ubRMSE (m3/m3) | MAE (m3/m3) | MBE (m3/m3) | Num1 1 | Num2 2 |
---|---|---|---|---|---|---|---|
ARM | ESA CCI 0.5110 * | ESA CCI 0.0712 | ESA CCI 0.0684 | ESA CCI 0.0548 | SMAP 0.0180 | 17 | 882 |
FLUXNET-AMERIFLUX | AMSR_AVG 0.6245 ** | AMSR_AVG 0.0985 | AMSR_AVG 0.0496 | AMSR_AVG 0.0851 | AMSR_DE −0.0783 | 1 | 19 |
PBO_H2O | AMSR_AVG 0.6431 * | ESA CCI 0.0651 | ESA CCI 0.0537 | SMAP 0.0471 | AMSR_DE 0.0000 | 135 | 1561 |
SOILSCAPE | AMSR_AVG 0.6707 * | ESA CCI 0.0937 | ESA CCI 0.0777 | ESA CCI 0.0788 | SMAP −0.0514 | 88 | 541 |
USCRN | ESA CCI 0.7489 * | ESA CCI 0.0787 | ESA CCI 0.0664 | ESA CCI 0.0654 | SMAP −0.0413 | 112 | 4720 |
iRON | ESA CCI 0.4479 * | ESA CCI 0.0603 | ESA CCI 0.0588 | ESA CCI 0.0475 | ESA CCI −0.0135 | 9 | 180 |
Normal Point Statistics (units: m3/m3) | Number of Points | |||||||
---|---|---|---|---|---|---|---|---|
Mean | Minimum | Lower Quartile | Median | Upper Quartile | Maximum | Normal Point | Outlier Point | |
ISMN | 0.1622 | 0.0017 | 0.0838 | 0.1466 | 0.2310 | 0.4438 | 8034 | 0 |
SMAP | 0.1774 | 0.0200 | 0.0873 | 0.1488 | 0.2527 | 0.4980 | 5743 | 103 |
ESA CCI | 0.2007 | 0.0201 | 0.1381 | 0.1994 | 0.2611 | 0.3990 | 7345 | 0 |
AMSR_AVG | 0.2074 | 0.0000 | 0.1100 | 0.1950 | 0.3000 | 0.5850 | 7430 | 257 |
AMSR_AS | 0.1862 | 0.0000 | 0.0900 | 0.1700 | 0.2800 | 0.5600 | 7493 | 194 |
AMSR_DE | 0.2275 | 0.0000 | 0.1200 | 0.2200 | 0.3300 | 0.6400 | 7376 | 311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Huang, X.; Zhao, S.; Qin, Z.; Fan, J.; Zhao, S. Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US. Sensors 2022, 22, 9977. https://doi.org/10.3390/s22249977
Feng S, Huang X, Zhao S, Qin Z, Fan J, Zhao S. Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US. Sensors. 2022; 22(24):9977. https://doi.org/10.3390/s22249977
Chicago/Turabian StyleFeng, Shouming, Xinyi Huang, Shuaishuai Zhao, Zhihao Qin, Jinlong Fan, and Shuhe Zhao. 2022. "Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US" Sensors 22, no. 24: 9977. https://doi.org/10.3390/s22249977
APA StyleFeng, S., Huang, X., Zhao, S., Qin, Z., Fan, J., & Zhao, S. (2022). Evaluation of Several Satellite-Based Soil Moisture Products in the Continental US. Sensors, 22(24), 9977. https://doi.org/10.3390/s22249977