Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices
Abstract
:1. Introduction
2. Flexible Piezoelectric Composite and Film-Based Energy Harvesters for Self-Powered IoTs and Wearable/Biomedical Electronic Devices
2.1. Flexible Piezoelectric Composite-Based Energy Harvesters
2.1.1. Role of Graphitic Carbons with Perovskite Piezoelectric Nanoparticles for Flexible and High-Performance Lead-Free Nanocomposite Generators
2.1.2. Role of Metal Nanorods with Piezoelectric Particles for Flexible and High-Performance Lead-Free Nanocomposite Generator
2.1.3. Role of Metal Nanowire Electrodes on Piezoelectric Particles and Carbon Nanotubes for Hyper-Stretchable and Elastic-Composite Generator
2.1.4. Bioinspired Piezoelectric Composite Generator for High-Performance Energy Harvesting
2.1.5. Dislocation-Induced Nanodomains in Piezoelectric Single-Crystal Micro-Cuboids for Transparent and Flexible Lead-Free Piezoelectric Pressure Sensor
2.2. Flexible Piezoelectric Film-Based Energy Harvesters
2.2.1. Transferring Piezoelectric Thin Film onto a Plastic Substrate by Laser Lift-Off Process for a Flexible and High-Efficiency Harvester
2.2.2. Transferring Single-Crystalline Piezoelectric Film onto a Plastic Substrate by a Mechanical Exfoliating Process for a Flexible and High-Performance Energy Harvester
2.2.3. Transferring Single-Crystalline Piezoelectric Film onto a Plastic Substrate by Solid-State Single-Crystal Growth Method for a Flexible and High-Performance Energy Harvester
2.2.4. Transferring an Aerosol Deposited Piezoelectric Film onto a Plastic Substrate by an Inorganic-Based Laser Lift-off Process for a 2Flexible and High-Performance Energy Harvester
2.2.5. Self-Powered Wireless Transmission Enabled by Harvesting In Vivo Biomechanical Energy with Flexible and High Performance of a Single-Crystalline Piezoelectric Energy Harvester
2.2.6. Transferring Aerosol Deposited Relaxor Ferroelectric and Piezoelectric Thick Films onto a Plastic Substrate by an Inorganic-Based Laser Lift-Off Process for a Flexible Self-Charging, Ultrafast and High-Power Density Ceramic Capacitor
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of things |
WSNs | Wireless sensor networks |
LED | Light emitting diode |
BT | BaTiO3 |
PZT | Pb(Zr,Ti)O3 |
PMN-PT | Pb(Mg1/3Nb2/3)O3–PbTiO3 |
PMN-PZT | Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 |
NCG | Nanocomposite generator |
NPs | Nanoparticles |
SW | Single wall |
MW-CNTs | Multi-walled carbon nanotube |
RGO | Reduced graphene oxide |
PDMS | Polydimethylsiloxane |
p-NC | Piezoelectric nanocomposite |
SEM | Scanning electron microscope |
Voc | Open circuit voltage |
Isc | Short circuit current |
CN | Capacitance |
RL | Load resistance |
RN | Internal resistance |
mWs | Milliwatts |
KNN | (K,Na)NbO3 |
KNLN | 0.942(K0.480Na0.535)NbO3-0.058LiNbO3 |
Cu NRs | Copper nanorods |
ITO | Indium tin oxide |
PET | Polyethylene terephthalate |
HRTEM | High-resolution transmission electron microscopy |
FFT | Fast Fourier Transform |
LCD | Liquid Crystal Display |
SEG | Stretchable elastic-composite generator |
VAgNWs | Very long Ag nanowires |
PEC | Piezoelectric elastic composite |
VLNP | Very long nanowire percolation |
SMG | Successive multistep growth |
MEMS | Microelectromechanical systems |
RFEs | Relaxor ferroelectrics |
NDs | Nanodomains |
PNRs | Polar nanoregions |
XRD | X-ray diffraction |
PVDF | Polyvinylidene fluoride |
LLO | Laser lift-off |
IDEs | Interdigitated electrodes |
MPB | Morphotropic phase boundary |
MIM | Metal-insulator-metal |
PU | Polyurethane |
ECG | Electrocardiogram |
SSCG | Solid-state single crystal growth |
AD | Aerosol deposition |
ILLO | Inorganic-based laser lift-off |
AC | Alternating current |
DC | Direct current |
RF | Radio frequency |
FOM | Figure of merit |
VDD | Drain voltage |
MCU | Microcontroller unit |
SPI | Serial peripheral interface |
SUHP | Self-charging, ultrafast and high-powered density |
Urec | Recoverable energy density |
References
- Kwak, M.S.; Peddigari, M.; Lee, H.Y.; Min, Y.; Park, K.; Kim, J.; Yoon, W.; Ryu, J.; Yi, S.N.; Jang, J.; et al. Exceeding 50 MW RMS-Output Magneto-Mechano-Electric Generator by Hybridizing Piezoelectric and Electromagnetic Induction Effects. Adv. Funct. Mater. 2022, 32, 2112028. [Google Scholar] [CrossRef]
- Singh, N.; Gunjan, V.K.; Chaudhary, G.; Kaluri, R.; Victor, N.; Lakshmanna, K. IoT Enabled HELMET to Safeguard the Health of Mine Workers. Comput. Commun. 2022, 193, 1–9. [Google Scholar] [CrossRef]
- Kwak, M.S.; Lim, K.-W.; Lee, H.Y.; Peddigari, M.; Jang, J.; Jeong, C.K.; Ryu, J.; Yoon, W.-H.; Yi, S.N.; Hwang, G.-T. Multiscale Surface Modified Magneto-Mechano-Triboelectric Nanogenerator Enabled by Eco-Friendly NaCl Imprinting Stamp for Self-Powered IoT Applications. Nanoscale 2021, 13, 8418–8424. [Google Scholar] [CrossRef]
- Chamra, A.; Harmanani, H. A Smart Green House Control and Management System Using IoT. In Proceedings of the 17th International Conference on Information Technology–New Generations; Springer: Cham, Switzerland, 2020; pp. 641–646. [Google Scholar]
- Lim, K.-W.; Peddigari, M.; Park, C.H.; Lee, H.Y.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; Choi, J.-H.; et al. A High Output Magneto-Mechano-Triboelectric Generator Enabled by Accelerated Water-Soluble Nano-Bullets for Powering a Wireless Indoor Positioning System. Energy Environ. Sci. 2019, 12, 666–674. [Google Scholar] [CrossRef]
- Song, H.; Patil, D.R.; Yoon, W.-H.; Kim, K.-H.; Choi, C.; Kim, J.-H.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. Significant Power Enhancement of Magneto-Mechano-Electric Generators by Magnetic Flux Concentration. Energy Environ. Sci. 2020, 13, 4238–4248. [Google Scholar] [CrossRef]
- Lee, H.E.; Park, J.H.; Jang, D.; Shin, J.H.; Im, T.H.; Lee, J.H.; Hong, S.K.; Wang, H.S.; Kwak, M.S.; Peddigari, M.; et al. Optogenetic Brain Neuromodulation by Stray Magnetic Field via Flash-Enhanced Magneto-Mechano-Triboelectric Nanogenerator. Nano Energy 2020, 75, 104951. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Pop-Vadean, A.; Pop, P.P.; Latinovic, T.; Barz, C.; Lung, C. Harvesting Energy an Sustainable Power Source, Replace Batteries for Powering WSN and Devices on the IoT. IOP Conf. Ser. Mater. Sci. Eng. 2017, 200, 012043. [Google Scholar] [CrossRef] [Green Version]
- Priya, S.; Song, H.-C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.-G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J.; et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvest. Syst. 2019, 4, 3–39. [Google Scholar] [CrossRef]
- Liu, X.; Shang, Y.; Zhang, J.; Zhang, C. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 14334–14341. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Chernozem, R.V.; Pariy, I.O.; Surmeneva, M.A. A Review on Piezo- and Pyroelectric Responses of Flexible Nano- and Micropatterned Polymer Surfaces for Biomedical Sensing and Energy Harvesting Applications. Nano Energy 2021, 79, 105442. [Google Scholar] [CrossRef]
- de Cea, M.; Atabaki, A.H.; Ram, R.J. Energy Harvesting Optical Modulators with Sub-Attojoule per Bit Electrical Energy Consumption. Nat. Commun. 2021, 12, 2326. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Sun, Z.; Wang, B.; Song, K.; Wang, J.; Gao, J.; Dong, S. Significantly Enhanced Power Generation from Extremely Low-Intensity Magnetic Field via a Clamped-Clamped Magneto-Mechano-Electric Generator. Adv. Energy Mater. 2022, 12, 2103345. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Kim, Y.; Lee, J.-H.; Oh, S.; Jeong, C.K.; Park, D.Y.; Ryu, J.; Kwon, H.; Lee, S.-G.; Joung, B.; et al. Self-Powered Deep Brain Stimulation via a Flexible PIMNT Energy Harvester. Energy Environ. Sci. 2015, 8, 2677–2684. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible Piezoelectric Thin-Film Energy Harvesters and Nanosensors for Biomedical Applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef]
- Snyder, D.S. Vibrating Transducer Power Supply for Use in Abnormal Tire Condition Warning Systems. U.S. Patent 4,384,482, 24 May 1983. [Google Scholar]
- Parvez Mahmud, M.A.; Huda, N.; Farjana, S.H.; Asadnia, M.; Lang, C. Recent Advances in Nanogenerator-Driven Self-Powered Implantable Biomedical Devices. Adv. Energy Mater. 2018, 8, 1701210. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, Z.-H.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z.L. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett. 2013, 13, 847–853. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Im, D.; Lee, S.E.; Lee, J.; Koo, M.; Park, S.Y.; Kim, S.; Yang, K.; Kim, S.J.; Lee, K.; et al. In Vivo Silicon-Based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers. ACS Nano 2013, 7, 4545–4553. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, C.; Yang, B.D.; Su, Y.; Tran, P.L.; Joe, P.; Anderson, E.; Xia, J.; Doraiswamy, V.; Dehdashti, B.; Feng, X.; et al. Conformal Piezoelectric Energy Harvesting and Storage from Motions of the Heart, Lung, and Diaphragm. Proc. Natl. Acad. Sci. USA 2014, 111, 1927–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.-I.; Xu, S.; Liu, Y.; Hwang, G.T.; Kang, S.J.L.; Wang, Z.L.; Lee, K.J. Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Lett. 2010, 10, 4939–4943. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-I.; Son, J.H.; Hwang, G.-T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Park, H.; Lee, J.-H.; Oh, S.; Park, K.-I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C.K.; No, K.; et al. Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester. Adv. Mater. 2014, 26, 4880–4887. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Yang, J.; Yang, S.H.; Lee, H.-Y.; Lee, M.; Park, D.Y.; Han, J.H.; Lee, S.J.; Jeong, C.K.; Kim, J.; et al. A Reconfigurable Rectified Flexible Energy Harvester via Solid-State Single Crystal Grown PMN-PZT. Adv. Energy Mater. 2015, 5, 1500051. [Google Scholar] [CrossRef]
- Park, K.-I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.-T.; Zhu, G.; Kim, J.E.; Kim, S.O.; Kim, D.K.; Wang, Z.L.; et al. Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Adv. Mater. 2012, 24, 2999–3004. [Google Scholar] [CrossRef]
- Park, K.-I.; Jeong, C.K.; Ryu, J.; Hwang, G.-T.; Lee, K.J. Flexible and Large-Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544. [Google Scholar] [CrossRef]
- Choi, M.-Y.; Choi, D.; Jin, M.-J.; Kim, I.; Kim, S.-H.; Choi, J.-Y.; Lee, S.Y.; Kim, J.M.; Kim, S.-W. Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods. Adv. Mater. 2009, 21, 2185–2189. [Google Scholar] [CrossRef]
- Wang, X. Piezoelectric Nanogenerators—Harvesting Ambient Mechanical Energy at the Nanometer Scale. Nano Energy 2012, 1, 13–24. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R.L.; Wang, Z.L. Self-Powered System with Wireless Data Transmission. Nano Lett. 2011, 11, 2572–2577. [Google Scholar] [CrossRef]
- Cha, S.; Kim, S.M.; Kim, H.; Ku, J.; Sohn, J.I.; Park, Y.J.; Song, B.G.; Jung, M.H.; Lee, E.K.; Choi, B.L.; et al. Porous PVDF As Effective Sonic Wave Driven Nanogenerators. Nano Lett. 2011, 11, 5142–5147. [Google Scholar] [CrossRef]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-Powered Nanowire Devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Dai, L.; Wang, Z.L. Power Generation with Laterally Packaged Piezoelectric Fine Wires. Nat. Nanotechnol. 2009, 4, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Yang, R.; Wang, S.; Wang, Z.L. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, Y.; Xu, C.; Zhu, G.; Wang, Z.L. High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Lett. 2010, 10, 5025–5031. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Li, C.; Zhu, G.; Wang, Z.L. Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Lett. 2009, 9, 1201–1205. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, G.; Yang, R.; Wang, A.C.; Wang, Z.L. Muscle-Driven In Vivo Nanogenerator. Adv. Mater. 2010, 22, 2534–2537. [Google Scholar] [CrossRef]
- Qi, Y.; Kim, J.; Nguyen, T.D.; Lisko, B.; Purohit, P.K.; McAlpine, M.C. Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons. Nano Lett. 2011, 11, 1331–1336. [Google Scholar] [CrossRef]
- Suhr, J.; Koratkar, N.; Keblinski, P.; Ajayan, P. Viscoelasticity in Carbon Nanotube Composites. Nat. Mater. 2005, 4, 134–137. [Google Scholar] [CrossRef]
- Veedu, V.P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P.M.; Ghasemi-Nejhad, M.N. Multifunctional Composites Using Reinforced Laminae with Carbon-Nanotube Forests. Nat. Mater. 2006, 5, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Seoul, C.; Kim, Y.-T.; Baek, C.-K. Electrospinning of Poly(Vinylidene Fluoride)/Dimethylformamide Solutions with Carbon Nanotubes. J. Polym. Sci. B Polym. Phys. 2003, 41, 1572–1577. [Google Scholar] [CrossRef]
- Chang, C.; Fuh, Y.-K.; Lin, L. A Direct-Write Piezoelectric PVDF Nanogenerator. In Proceedings of the TRANSDUCERS 2009–2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, 21–25 June 2009; pp. 1485–1488. [Google Scholar]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.-K.; Lin, L. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Kim, S.; Lee, J.; Kim, K.; Kim, S.; Kang, C.; Yoon, S.; Kim, Y.S. All-Solution-Processed Flexible Thin Film Piezoelectric Nanogenerator. Adv. Mater. 2012, 24, 6022–6027. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Song, J.; Wang, Z.L. Integrated Nanogenerators in Biofluid. Nano Lett. 2007, 7, 2475–2479. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, Y.; Sakamoto, W.; Maiwa, H.; Shimura, T.; Yogo, T. Lead-Free Piezoelectric (K,Na)NbO3 Thin Films Derived from Metal Alkoxide Precursors. Jpn. J. Appl. Phys. 2007, 46, L311–L313. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-Free Piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.; Ohsato, H. Phase Transitional Behavior and Piezoelectric Properties of (Na0.5K0.5)NbO3–LiNbO3 Ceramics. Appl. Phys. Lett. 2004, 85, 4121–4123. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Romero, J.J.; Ochoa, D.A.; García, J.E.; Perez, R.; Fernandez, J.F. Effects of Poling Process on KNN-Modified Piezoceramic Properties. J. Am. Ceram. Soc. 2010, 93, 318–321. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, M.; Hong, J.-I.; Ding, Y.; Chen, C.-Y.; Chou, L.-J.; Wang, Z.L. Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano 2011, 5, 10041–10046. [Google Scholar] [CrossRef]
- Jung, J.H.; Chen, C.-Y.; Yun, B.K.; Lee, N.; Zhou, Y.; Jo, W.; Chou, L.-J.; Wang, Z.L. Lead-Free KNbO3 Ferroelectric Nanorod Based Flexible Nanogenerators and Capacitors. Nanotechnology 2012, 23, 375401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrout, T.R.; Zhang, S.J. Lead-Free Piezoelectric Ceramics: Alternatives for PZT? J. Electroceram. 2007, 19, 113–126. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, J.-J.; Hahn, B.-D.; Park, D.-S.; Yoon, W.-H.; Kim, K.-H. Fabrication and Ferroelectric Properties of Highly Dense Lead-Free Piezoelectric (K0.5Na0.5)NbO3 Thick Films by Aerosol Deposition. Appl. Phys. Lett. 2007, 90, 152901. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, B.-P.; Li, J.-F. High Piezoelectric D33 Coefficient in Li-Modified Lead-Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature. Appl. Phys. Lett. 2007, 90, 242909. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.-F.; Liu, N. Piezoelectric Properties of Low-Temperature Sintered Li-Modified (Na,K)NbO3 Lead-Free Ceramics. Appl. Phys. Lett. 2008, 93, 092904. [Google Scholar] [CrossRef]
- Jeong, C.K.; Park, K.-I.; Ryu, J.; Hwang, G.-T.; Lee, K.J. Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler. Adv. Funct. Mater. 2014, 24, 2620–2629. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, H.; Hu, Y.; Yang, K.; Hu, M.; Zhou, D.; Guan, J. Synthesis, Growth Mechanism and Optical Properties of (K,Na)NbO3 Nanostructures. CrystEngComm 2010, 12, 3157. [Google Scholar] [CrossRef]
- Sun, H.; Tian, H.; Yang, Y.; Xie, D.; Zhang, Y.-C.; Liu, X.; Ma, S.; Zhao, H.-M.; Ren, T.-L. A Novel Flexible Nanogenerator Made of ZnO Nanoparticles and Multiwall Carbon Nanotube. Nanoscale 2013, 5, 6117. [Google Scholar] [CrossRef]
- Xia, M.; Luo, C.; Su, X.; Li, Y.; Li, P.; Hu, J.; Li, G.; Jiang, H.; Zhang, W. KNN/PDMS/C-Based Lead-Free Piezoelectric Composite Film for Flexible Nanogenerator. J. Mater. Sci. Mater. Electron. 2019, 30, 7558–7566. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A Hybrid Piezoelectric Nanogenerator Comprising of KNN/ZnO Nanorods Incorporated PVDF Electrospun Nanocomposite Webs. Int. J. Energy Res. 2020, 44, 5545–5563. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An Ultra-Lightweight Design for Imperceptible Plastic Electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Rim Cho, H.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S.; et al. Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, G.-T.; Park, H.; Lee, J.-H.; Oh, S.; Park, K.-I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C.K.; No, K.; et al. Nanogenerators: Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester (Adv. Mater. 28/2014). Adv. Mater. 2014, 26, 4754. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.-T.; Park, D.Y.; Park, J.H.; Lee, S.S.; Byun, M.; Ko, S.H.; et al. A Hyper-Stretchable Elastic-Composite Energy Harvester. Adv. Mater. 2015, 27, 2866–2875. [Google Scholar] [CrossRef]
- Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K.H.; Lee, D.; Lee, S.S.; Ko, S.H. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Adv. Mater. 2012, 24, 3326–3332. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef]
- Leach, A.M.; McDowell, M.; Gall, K. Deformation of Top-Down and Bottom-Up Silver Nanowires. Adv. Funct. Mater. 2007, 17, 43–53. [Google Scholar] [CrossRef]
- Jeong, C.K.; Baek, K.M.; Niu, S.; Nam, T.W.; Hur, Y.H.; Park, D.Y.; Hwang, G.-T.; Byun, M.; Wang, Z.L.; Jung, Y.S.; et al. Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly. Nano Lett. 2014, 14, 7031–7038. [Google Scholar] [CrossRef]
- Lim, S.; Son, D.; Kim, J.; Lee, Y.B.; Song, J.-K.; Choi, S.; Lee, D.J.; Kim, J.H.; Lee, M.; Hyeon, T.; et al. Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Adv. Funct. Mater. 2015, 25, 375–383. [Google Scholar] [CrossRef]
- Baek, C.; Yun, J.H.; Wang, J.E.; Jeong, C.K.; Lee, K.J.; Park, K.-I.; Kim, D.K. A Flexible Energy Harvester Based on a Lead-Free and Piezoelectric BCTZ Nanoparticle–Polymer Composite. Nanoscale 2016, 8, 17632–17638. [Google Scholar] [CrossRef]
- Park, K.-I.; Jeong, C.K.; Kim, N.K.; Lee, K.J. Stretchable Piezoelectric Nanocomposite Generator. Nano Converg. 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, R.O. Armoured Oyster Shells. Nat. Mater. 2014, 13, 435–437. [Google Scholar] [CrossRef] [PubMed]
- He, W.-X.; Rajasekharan, A.K.; Tehrani-Bagha, A.R.; Andersson, M. Mesoscopically Ordered Bone-Mimetic Nanocomposites. Adv. Mater. 2015, 27, 2260–2264. [Google Scholar] [CrossRef] [PubMed]
- Heidebrecht, A.; Eisoldt, L.; Diehl, J.; Schmidt, A.; Geffers, M.; Lang, G.; Scheibel, T. Biomimetic Fibers Made of Recombinant Spidroins with the Same Toughness as Natural Spider Silk. Adv. Mater. 2015, 27, 2189–2194. [Google Scholar] [CrossRef]
- Yang, W.; Chen, I.H.; Gludovatz, B.; Zimmermann, E.A.; Ritchie, R.O.; Meyers, M.A. Natural Flexible Dermal Armor. Adv. Mater. 2013, 25, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.A.; Chen, P.-Y.; Lin, A.Y.-M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jeong, C.K.; Yang, T.; Sun, H.; Chen, L.-Q.; Zhang, S.; Chen, W.; Wang, Q. Bioinspired Elastic Piezoelectric Composites for High-Performance Mechanical Energy Harvesting. J. Mater. Chem. A 2018, 6, 14546–14552. [Google Scholar] [CrossRef] [Green Version]
- Merselmiz, S.; Hanani, Z.; Prah, U.; Mezzane, D.; Hajji, L.; Abkhar, Z.; Spreitzer, M.; Vengust, D.; Uršič, H.; Fabijan, D.; et al. Design of Lead-Free BCZT-Based Ceramics with Enhanced Piezoelectric Energy Harvesting Performances. Phys. Chem. Chem. Phys. 2022, 24, 6026–6036. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Jeong, C.K.; Sun, H.; Yang, G.; Chen, W.; Wang, Q. A Microcube-Based Hybrid Piezocomposite as a Flexible Energy Generator. RSC Adv. 2017, 7, 32502–32507. [Google Scholar] [CrossRef]
- Jeong, C.K.; Cho, S.B.; Han, J.H.; Park, D.Y.; Yang, S.; Park, K.-I.; Ryu, J.; Sohn, H.; Chung, Y.-C.; Lee, K.J. Flexible Highly-Effective Energy Harvester via Crystallographic and Computational Control of Nanointerfacial Morphotropic Piezoelectric Thin Film. Nano Res. 2017, 10, 437–455. [Google Scholar] [CrossRef]
- Lee, H.-W.; Moon, S.; Choi, C.-H.; Kim, D.K. Synthesis and Size Control of Tetragonal Barium Titanate Nanopowders by Facile Solvothermal Method. J. Am. Ceram. Soc. 2012, 95, 2429–2434. [Google Scholar] [CrossRef]
- Bai, Y.; Matousek, A.; Tofel, P.; Bijalwan, V.; Nan, B.; Hughes, H.; Button, T.W. (Ba,Ca)(Zr,Ti)O3 Lead-Free Piezoelectric Ceramics—The Critical Role of Processing on Properties. J. Eur. Ceram. Soc. 2015, 35, 3445–3456. [Google Scholar] [CrossRef]
- Baek, C.; Wang, J.E.; Ryu, S.; Kim, J.-H.; Jeong, C.K.; Park, K.-I.; Kim, D.K. Facile Hydrothermal Synthesis of BaZrxTi1−xO3 Nanoparticles and Their Application to a Lead-Free Nanocomposite Generator. RSC Adv. 2017, 7, 2851–2856. [Google Scholar] [CrossRef] [Green Version]
- Cowley, R.A.; Gvasaliya, S.N.; Lushnikov, S.G.; Roessli, B.; Rotaru, G.M. Relaxing with Relaxors: A Review of Relaxor Ferroelectrics. Adv. Phys. 2011, 60, 229–327. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Damjanovic, D.; Chen, L.; Shrout, T.R. Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics. Adv. Funct. Mater. 2018, 28, 1801504. [Google Scholar] [CrossRef]
- Cohen, R.E. Relaxors Go Critical. Nature 2006, 441, 941–942. [Google Scholar] [CrossRef]
- Takenaka, H.; Grinberg, I.; Liu, S.; Rappe, A.M. Slush-like Polar Structures in Single-Crystal Relaxors. Nature 2017, 546, 391–395. [Google Scholar] [CrossRef]
- Hu, C.; Meng, X.; Zhang, M.-H.; Tian, H.; Daniels, J.E.; Tan, P.; Huang, F.; Li, L.; Wang, K.; Li, J.-F.; et al. Ultra-Large Electric Field–Induced Strain in Potassium Sodium Niobate Crystals. Sci. Adv. 2020, 6, eaay5979. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh–Energy Density Lead-Free Dielectric Films via Polymorphic Nanodomain Design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef]
- Gao, X.; Cheng, Z.; Chen, Z.; Liu, Y.; Meng, X.; Zhang, X.; Wang, J.; Guo, Q.; Li, B.; Sun, H.; et al. The Mechanism for the Enhanced Piezoelectricity in Multi-Elements Doped (K,Na)NbO3 Ceramics. Nat. Commun. 2021, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, H.; Hwang, G.-T.; Peddigari, M.; Ahn, C.-W.; Hahn, B.-D.; Yoon, W.-H.; Lee, J.W.; Park, K.-I.; Jang, J.; et al. Molten-Salt Processed Potassium Sodium Niobate Single-Crystal Microcuboids with Dislocation-Induced Nanodomain Structures and Relaxor Ferroelectric Behavior. ACS Nano 2022, 16, 15328–15338. [Google Scholar] [CrossRef] [PubMed]
- Hailili, R.; Wang, C.; Lichtfouse, E. Perovskite Nanostructures Assembled in Molten Salt Based on Halogen Anions KX (X = F, Cl and Br): Regulated Morphology and Defect-Mediated Photocatalytic Activity. Appl. Catal. B Environ. 2018, 232, 531–543. [Google Scholar] [CrossRef]
- Hailili, R.; Jacobs, D.L.; Zang, L.; Wang, C. Morphology Controlled Synthesis of CeTiO4 Using Molten Salts and Enhanced Photocatalytic Activity for CO2 Reduction. Appl. Surf. Sci. 2018, 456, 360–368. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Höfling, M.; Zhou, X.; Riemer, L.M.; Bruder, E.; Liu, B.; Zhou, L.; Groszewicz, P.B.; Zhuo, F.; Xu, B.-X.; Durst, K.; et al. Control of Polarization in Bulk Ferroelectrics by Mechanical Dislocation Imprint. Science 2021, 372, 961–964. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S. Critical Exponents of the Dielectric Constants in Diffused-Phase-Transition Crystals. Ferroelectrics 1982, 44, 55–61. [Google Scholar] [CrossRef]
- Jeong, C.K.; Dong, A.; Hyeon, Y.; Hwang, G.-T.; Lee, G.-J.; Lee, M.-K.; Park, J.-J.; Park, K.-I. Nanowire-Percolated Piezoelectric Copolymer-Based Highly Transparent and Flexible Self-Powered Sensors. J. Mater. Chem. A 2019, 7, 25481–25489. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Lu, N.; Ghaffari, R.; Kim, Y.-S.; Lee, S.P.; Xu, L.; Wu, J.; Kim, R.-H.; Song, J.; Liu, Z.; et al. Materials for Multifunctional Balloon Catheters with Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy. Nat. Mater. 2011, 10, 316–323. [Google Scholar] [CrossRef]
- Xu, S.; Yeh, Y.; Poirier, G.; McAlpine, M.C.; Register, R.A.; Yao, N. Flexible Piezoelectric PMN–PT Nanowire-Based Nanocomposite and Device. Nano Lett. 2013, 13, 2393–2398. [Google Scholar] [CrossRef] [PubMed]
- Camargo, E.R.; Frantti, J.; Kakihana, M. Low-Temperature Chemical Synthesis of Lead Zirconate Titanate (PZT) Powders Free from Halides and Organics. J. Mater. Chem. 2001, 11, 1875–1879. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Park, J.; Kim, W.K.; Yang, Y.; Lee, E.; Han, C.J.; Park, S.Y.; Lee, J.; Kim, Y.S. An Effective Energy Harvesting Method from a Natural Water Motion Active Transducer. Energy Environ. Sci. 2014, 7, 3279–3283. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.-M.; Kim, D.-H.; Lee, H.-Y.; Shrout, T.R. Electromechanical Properties of PMN–PZT Piezoelectric Single Crystals Near Morphotropic Phase Boundary Compositions. J. Am. Ceram. Soc. 2007, 90, 3859–3862. [Google Scholar] [CrossRef]
- Lee, S.-G.; Monteiro, R.G.; Feigelson, R.S.; Lee, H.S.; Lee, M.; Park, S.-E. Growth and Electrostrictive Properties of Pb(Mg1/3Nb2/3)O3 Crystals. Appl. Phys. Lett. 1999, 74, 1030–1032. [Google Scholar] [CrossRef]
- Li, F.; Jin, L.; Xu, Z.; Wang, D.; Zhang, S. Electrostrictive Effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 Crystals. Appl. Phys. Lett. 2013, 102, 152910. [Google Scholar] [CrossRef]
- Kamba, S.; Buixaderas, E.; Petzelt, J.; Fousek, J.; Nosek, J.; Bridenbaugh, P. Infrared and Raman Spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92–[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71–[PbTiO3]0.29 Single Crystals. J Appl. Phys. 2003, 93, 933–939. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, G.; Conti, M.; di Francesco, M.; Passarella, A. Energy Conservation in Wireless Sensor Networks: A Survey. Ad Hoc Netw. 2009, 7, 537–568. [Google Scholar] [CrossRef]
- Starlz, T.E.; Gaertner, R.A.; Webb, R.C. The Effects of Repetitive Electric Cardiac Stimulation in Dogs With Normal Hearts, Complete Heart Block and Experimental Cardiac Arrest. Circulation 1955, 11, 952–962. [Google Scholar]
- Gu, L.; Cui, N.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.; Wu, W.; Liu, J.; Zhao, Y.; Ma, F.; et al. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Lett. 2013, 13, 91–94. [Google Scholar] [CrossRef]
- Park, S.-E.E.; Hackenberger, W. High Performance Single Crystal Piezoelectrics: Applications and Issues. Curr. Opin. Solid State Mater. Sci. 2002, 6, 11–18. [Google Scholar] [CrossRef]
- Wlazło, M.; Haras, M.; Kołodziej, G.; Szawcow, O.; Ostapko, J.; Andrysiewicz, W.; Kharytonau, D.S.; Skotnicki, T. Piezoelectric Response and Substrate Effect of ZnO Nanowires for Mechanical Energy Harvesting in Internet-of-Things Applications. Materials 2022, 15, 6767. [Google Scholar] [CrossRef] [PubMed]
- Manekkathodi, A.; Lu, M.-Y.; Wang, C.W.; Chen, L.-J. Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics. Adv. Mater. 2010, 22, 4059–4063. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Fang, G.; Li, C.; Sheng, S.; Fang, L.; Fu, Q.; Zhao, X.-Z. Controllable Synthesis of Vertically Aligned ZnO Nanorod Arrays in Aqueous Solution. J. Nanosci. Nanotechnol. 2006, 6, 2062–2066. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Annapureddy, V.; Han, J.H.; Joe, D.J.; Baek, C.; Park, D.Y.; Kim, D.H.; Park, J.H.; Jeong, C.K.; Park, K.-I.; et al. Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester. Adv. Energy Mater. 2016, 6, 1600237. [Google Scholar] [CrossRef]
- Randall, C.A.; Kim, N.; Kucera, J.-P.; Cao, W.; Shrout, T.R. Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc. 1998, 81, 677–688. [Google Scholar] [CrossRef]
- Uchino, K.; Sadanaga, E.; Oonishi, K.; Morohashi, T.; Yamamura, H. Ceramic Dielectrics: Composition, Processing, and Properties; Proc. Symp. on Ceramic Dielectrics: Indianapolis, Indiana, 1989. [Google Scholar]
- Hu, S.H.; Hu, G.J.; Meng, X.J.; Wang, G.S.; Sun, J.L.; Guo, S.L.; Chu, J.H.; Dai, N. The Grain Size Effect of the Pb(Zr0.45Ti0.55)O3 Thin Films Deposited on LaNiO3-Coated Silicon by Modified Sol–Gel Process. J. Cryst Growth 2004, 260, 109–114. [Google Scholar] [CrossRef]
- Panescu, D. Emerging Technologies [Wireless Communication Systems for Implantable Medical Devices]. IEEE Eng. Med. Biol. Mag. 2008, 27, 96–101. [Google Scholar] [CrossRef]
- Budinger, T.F. Biomonitoring with Wireless Communications. Annu. Rev. Biomed. Eng. 2003, 5, 383–412. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, A.; Kim, S.; Poon, A. Implantable Biomedical Devices: Wireless Powering and Communication. IEEE Commun. Mag. 2012, 50, 152–159. [Google Scholar] [CrossRef]
- Wood, M.A.; Ellenbogen, K.A. Cardiac Pacemakers From the Patient’s Perspective. Circulation 2002, 105, 2136–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.-H.; Tao, H.; Kim, T.; Zhang, Y.; Kim, S.; Panilaitis, B.; Yang, M.; Kim, D.-H.; Jung, Y.H.; Kim, B.H.; et al. Materials and Designs for Wirelessly Powered Implantable Light-Emitting Systems. Small 2012, 8, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Cheng, M.; Xiao, M.; Zhang, L.; Ju, G.; Shi, F. Biomimicking of a Swim Bladder and Its Application as a Mini-Generator. Adv. Mater. 2017, 29, 1603312. [Google Scholar] [CrossRef]
- Song, K.; Han, J.H.; Lim, T.; Kim, N.; Shin, S.; Kim, J.; Choo, H.; Jeong, S.; Kim, Y.-C.; Wang, Z.L.; et al. Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants. Adv. Healthc. Mater. 2016, 5, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Zurbuchen, A.; Pfenniger, A.; Stahel, A.; Stoeck, C.T.; Vandenberghe, S.; Koch, V.M.; Vogel, R. Energy Harvesting from the Beating Heart by a Mass Imbalance Oscillation Generator. Ann. Biomed. Eng. 2013, 41, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfenniger, A.; Jonsson, M.; Zurbuchen, A.; Koch, V.M.; Vogel, R. Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself. Ann. Biomed. Eng. 2013, 41, 2248–2263. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hwang, G.-T.; Kim, S.; Seo, J.; Park, H.-J.; Yu, K.; Kim, T.-S.; Lee, K.J. Flash-Induced Self-Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester. Adv. Mater. 2017, 29, 1603473. [Google Scholar] [CrossRef]
- Kim, D.H.; Shin, H.J.; Lee, H.; Jeong, C.K.; Park, H.; Hwang, G.-T.; Lee, H.-Y.; Joe, D.J.; Han, J.H.; Lee, S.H.; et al. In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters. Adv. Funct. Mater. 2017, 27, 1700341. [Google Scholar] [CrossRef]
- Bilgen, O.; Amin Karami, M.; Inman, D.J.; Friswell, M.I. The Actuation Characterization of Cantilevered Unimorph Beams with Single Crystal Piezoelectric Materials. Smart Mater. Struct. 2011, 20, 055024. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.-M.; Kim, D.-H.; Lee, H.-Y.; Shrout, T.R. Characterization of Mn-Modified Pb(Mg1∕3Nb2∕3)O3–PbZrO3–PbTiO3 Single Crystals for High Power Broad Bandwidth Transducers. Appl. Phys. Lett. 2008, 93, 122908. [Google Scholar] [CrossRef] [PubMed]
- Pattipaka, S.; Jeong, J.; Choi, H.; Ryu, J.; Hwang, G.-T. Magneto-Mechano-Electric (MME) Composite Devices for Energy Harvesting and Magnetic Field Sensing Applications. Sensors 2022, 22, 5723. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Kang, J.-E.; Zhou, Y.; Choi, S.-Y.; Yoon, W.-H.; Park, D.-S.; Choi, J.-J.; Hahn, B.-D.; Ahn, C.-W.; Kim, J.-W.; et al. Ubiquitous Magneto-Mechano-Electric Generator. Energy Environ. Sci. 2015, 8, 2402–2408. [Google Scholar] [CrossRef]
- Lu, B.; Chen, Y.; Ou, D.; Chen, H.; Diao, L.; Zhang, W.; Zheng, J.; Ma, W.; Sun, L.; Feng, X. Ultra-Flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy. Sci. Rep. 2015, 5, 16065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors. Energy Environ. Sci 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Rasheed, A.; He, W.; Qian, Y.; Park, H.; Kang, D.J. Flexible Supercapacitor-Type Rectifier-Free Self-Charging Power Unit Based on a Multifunctional Polyvinylidene Fluoride–ZnO–RGO Piezoelectric Matrix. ACS Appl. Mater Interfaces. 2020, 12, 20891–20900. [Google Scholar] [CrossRef]
- Song, W.; Yin, X.; Liu, D.; Ma, W.; Zhang, M.; Li, X.; Cheng, P.; Zhang, C.; Wang, J.; Wang, Z.L. A Highly Elastic Self-Charging Power System for Simultaneously Harvesting Solar and Mechanical Energy. Nano Energy 2019, 65, 103997. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.L. Recent Advances in Triboelectric Nanogenerator Based Self-Charging Power Systems. Energy Storage Mater. 2019, 23, 617–628. [Google Scholar] [CrossRef]
- Shi, X.; Chen, S.; Zhang, H.; Jiang, J.; Ma, Z.; Gong, S. Portable Self-Charging Power System via Integration of a Flexible Paper-Based Triboelectric Nanogenerator and Supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 18657–18666. [Google Scholar] [CrossRef]
- Pu, X.; Li, L.; Song, H.; Du, C.; Zhao, Z.; Jiang, C.; Cao, G.; Hu, W.; Wang, Z.L. A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics. Adv. Mater. 2015, 27, 2472–2478. [Google Scholar] [CrossRef]
- Xue, X.; Wang, S.; Guo, W.; Zhang, Y.; Wang, Z.L. Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell. Nano Lett. 2012, 12, 5048–5054. [Google Scholar] [CrossRef]
- Pu, X.; Hu, W.; Wang, Z.L. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices. Small 2018, 14, 1702817. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.-H.; Lee, J.; Yamauchi, Y.; Choi, C.H.; Kim, J.H. Research Update: Hybrid Energy Devices Combining Nanogenerators and Energy Storage Systems for Self-Charging Capability. APL Mater. 2017, 5, 073804. [Google Scholar] [CrossRef] [Green Version]
- Maitra, A.; Paria, S.; Karan, S.K.; Bera, R.; Bera, A.; Das, A.K.; Si, S.K.; Halder, L.; De, A.; Khatua, B.B. Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation. ACS Appl. Mater. Interfaces 2019, 11, 5022–5036. [Google Scholar] [CrossRef]
- He, T.; Wang, H.; Wang, J.; Tian, X.; Wen, F.; Shi, Q.; Ho, J.S.; Lee, C. Self-Sustainable Wearable Textile Nano-Energy Nano-System (NENS) for Next-Generation Healthcare Applications. Adv. Sci. 2019, 6, 1901437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Yang, J.; Li, X.; Wu, Y.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-Scale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Self-Powered Sleeping Monitoring. Adv. Funct. Mater. 2018, 28, 1704112. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Cheng, X.; Li, G.; Chen, X.; Chen, H.; Miao, L.; Zhang, X.; Zhang, H. High-Efficiency Self-Charging Smart Bracelet for Portable Electronics. Nano Energy 2019, 55, 29–36. [Google Scholar] [CrossRef]
- Chen, X.; Villa, N.S.; Zhuang, Y.; Chen, L.; Wang, T.; Li, Z.; Kong, T. Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Adv. Energy Mater. 2020, 10, 1902769. [Google Scholar] [CrossRef]
- He, H.; Fu, Y.; Zhao, T.; Gao, X.; Xing, L.; Zhang, Y.; Xue, X. All-Solid-State Flexible Self-Charging Power Cell Basing on Piezo-Electrolyte for Harvesting/Storing Body-Motion Energy and Powering Wearable Electronics. Nano Energy 2017, 39, 590–600. [Google Scholar] [CrossRef]
- Amar, A.; Kouki, A.; Cao, H. Power Approaches for Implantable Medical Devices. Sensors 2015, 15, 28889–28914. [Google Scholar] [CrossRef] [PubMed]
- Peddigari, M.; Park, J.H.; Han, J.H.; Jeong, C.K.; Jang, J.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; et al. Flexible Self-Charging, Ultrafast, High-Power-Density Ceramic Capacitor System. ACS Energy Lett. 2021, 1383–1391. [Google Scholar] [CrossRef]
- Peddigari, M.; Palneedi, H.; Hwang, G.-T.; Ryu, J. Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications. J. Korean Ceram. Soc. 2019, 56, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Palneedi, H.; Peddigari, M.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. Recent Development of High Energy Density Polymers for Dielectric Capacitors. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036–1042. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C.-W.; Shen, Y. High-Energy-Density Ferroelectric Polymer Nanocomposites for Capacitive Energy Storage: Enhanced Breakdown Strength and Improved Discharge Efficiency. Mater. Today 2019, 29, 49–67. [Google Scholar] [CrossRef]
- Peddigari, M.; Palneedi, H.; Hwang, G.-T.; Lim, K.W.; Kim, G.-Y.; Jeong, D.-Y.; Ryu, J. Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior. ACS Appl. Mater. Interfaces 2018, 10, 20720–20727. [Google Scholar] [CrossRef]
- Park, J.H.; Han, S.; Kim, D.; You, B.K.; Joe, D.J.; Hong, S.; Seo, J.; Kwon, J.; Jeong, C.K.; Park, H.-J.; et al. Plasmonic-Tuned Flash Cu Nanowelding with Ultrafast Photochemical-Reducing and Interlocking on Flexible Plastics. Adv. Funct. Mater. 2017, 27, 1701138. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, H.; Kim, Y.; We, J.H.; Shin, J.S.; Lee, H.E.; Oh, M.-W.; Lee, K.J.; Cho, B.J. Post Ionized Defect Engineering of the Screen-Printed Bi 2 Te 2.7 Se 0.3 Thick Film for High Performance Flexible Thermoelectric Generator. Nano Energy 2017, 31, 258–263. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattipaka, S.; Bae, Y.M.; Jeong, C.K.; Park, K.-I.; Hwang, G.-T. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. Sensors 2022, 22, 9506. https://doi.org/10.3390/s22239506
Pattipaka S, Bae YM, Jeong CK, Park K-I, Hwang G-T. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. Sensors. 2022; 22(23):9506. https://doi.org/10.3390/s22239506
Chicago/Turabian StylePattipaka, Srinivas, Young Min Bae, Chang Kyu Jeong, Kwi-Il Park, and Geon-Tae Hwang. 2022. "Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices" Sensors 22, no. 23: 9506. https://doi.org/10.3390/s22239506
APA StylePattipaka, S., Bae, Y. M., Jeong, C. K., Park, K.-I., & Hwang, G.-T. (2022). Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. Sensors, 22(23), 9506. https://doi.org/10.3390/s22239506