Feedback Regimes of LFI Sensors: Experimental Investigations
Abstract
:1. Introduction
2. Theoretical Model of Laser Feedback Interferometry Signals
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description | Value / Units |
---|---|---|
Laser Terminal voltage | Varies, | |
Carrier density in the laser cavity, (steady-state) | Varies, | |
Intrinsic carrier density and carrier density at transparency | 1.8 | |
Phase under optical feedback, | Varies, rad | |
Phase in the absence of optical feedback, | Varies, rad | |
Laser cavity group velocity, | 7.138 | |
Refractive index and length of the laser active region | 4.2, 250 µm | |
Laser internal cavity round-trip time, | 7.005 | |
Laser emission wavelength in vacuum | 852 nm | |
Laser mode angular frequency | Varies, rad | |
Laser mode angular frequency in the absence of optical feedback at threshold | ||
I | Drive current | 60 mA |
Photon lifetime in laser cavity | 2.768 | |
Henry’s linewidth enhancement factor | 3 | |
a | Differential gain | |
Width and height of the laser active region | 2 µm, 80 Å | |
V | Volume of active region in the laser cavity | |
Effective cavity volume occupied by photons, | ||
Optical confinement factor, | 0.032 | |
Reflectivity of the right laser facet | 0.324 | |
Reflectivity of external target | 0.99 | |
Re-injection coupling factor | Varies | |
Feedback coupling coefficient, | Varies | |
Feedback coupling rate, | Varies, | |
C | Feedback level/parameter, | Varies |
Refractive index and length of the external cavity | 1.00, 0.5 m | |
Round-trip time of the external laser cavity, | ||
Target harmonic displacement amplitude and frequency | , 330 Hz | |
Boltzmann’s constant | ||
T | Temperature | 300 |
q | Charge on the electron | C |
t | Time | Varies, |
References
- Giuliani, G.; Norgia, M.; Donati, S.; Bosch, T. Laser diode self-mixing technique for sensing applications. J. Opt. A Pure Appl. Opt. 2002, 4, S283–S294. [Google Scholar] [CrossRef] [Green Version]
- Donati, S. Developing self-mixing interferometry for instrumentation and measurements. Laser Photon. Rev. 2012, 6, 393–417. [Google Scholar] [CrossRef]
- Taimre, T.; Nikolić, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakić, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photon. 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Bertling, K.; Lim, Y.; Taimre, T.; Indjin, D.; Dean, P.; Weih, R.; Höfling, S.; Kamp, M.; von Edlinger, M.; Koeth, J.; et al. Demonstration of the self-mixing effect in interband cascade lasers. Appl. Phys. Lett. 2013, 103, 231107. [Google Scholar] [CrossRef] [Green Version]
- Veng, M.; Perchoux, J.; Bony, F. Fringe Disappearance in Self-Mixing Interferometry Laser Sensors: Model and Application to the Absolute Distance Measurement Scheme. IEEE Sens. J. 2019, 19, 5521–5528. [Google Scholar] [CrossRef] [Green Version]
- Donati, S.; Norgia, M. Native signal self-mix interferometer has less than 1 nm noise equivalent displacement. Opt. Lett. 2021, 46, 1995–1998. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.L.; Kliese, R.; Bertling, K.; Tanimizu, K.; Jacobs, P.A.; Rakić, A.D. Self-mixing flow sensor using a monolithic VCSEL array with parallel readout. Opt. Express 2010, 18, 11720–11727. [Google Scholar] [CrossRef]
- nez, C.Y.; Azcona, F.J.; Royo, S. Confocal flowmeter based on self-mixing interferometry for real-time velocity profiling of turbid liquids flowing in microcapillaries. Opt. Express 2019, 27, 24340–24352. [Google Scholar] [CrossRef]
- Mowla, A.; Du, B.W.; Taimre, T.; Bertling, K.; Wilson, S.; Soyer, H.P.; Rakić, A.D. Confocal laser feedback tomography for skin cancer detection. Biomed. Opt. Express 2017, 8, 4037–4048. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Perchoux, J.; Vanel, A.; Tronche, C.; Achaoui, Y.; Dupont, G.; Bertling, K.; Rakić, A.; Antonakakis, T.; Enoch, S.; et al. Acoustic flat lensing using an indefinite medium. Phys. Rev. B 2019, 99, 100301. [Google Scholar] [CrossRef]
- Mezzapesa, F.; Columbo, L.; Brambilla, M.; Dabbicco, M.; Vitiello, M.; Scamarcio, G. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers. Appl. Phys. Lett. 2014, 104, 041112. [Google Scholar] [CrossRef]
- Han, S.; Bertling, K.; Dean, P.; Keeley, J.; Burnett, A.D.; Lim, Y.L.; Khanna, S.P.; Valavanis, A.; Linfield, E.H.; Davies, A.G.; et al. Laser Feedback Interferometry as a Tool for Analysis of Granular Materials at Terahertz Frequencies: Towards Imaging and Identification of Plastic Explosives. Sensors 2016, 16, 352. [Google Scholar] [CrossRef] [Green Version]
- Bertling, K.; Han, S.; Wu, T.; Zhao, C.; Lim, Y.L.; Dean, P.; Khanna, S.P.; Indjin, D.; Linfield, E.H.; Davies, A.G.; et al. Determining Ethanol Content of Liquid Solutions Using Laser Feedback Interferometry with a Terahertz Quantum Cascade Laser. IEEE Sensors Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rubino, P.; Keeley, J.; Sulollari, N.; Burnett, A.D.; Valavanis, A.; Kundu, I.; Rosamond, M.C.; Li, L.; Linfield, E.H.; Davies, A.G.; et al. All-electronic phase-resolved THz microscopy using the self-mixing effect in a semiconductor laser. ACS Photon. 2021, 8, 1001–1006. [Google Scholar] [CrossRef]
- Reichel, K.S.; Pogna, E.A.A.; Biasco, S.; Viti, L.; Gaspare, A.D.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S. Self-mixing interferometry and near-field nanoscopy in quantum cascade random lasers at terahertz frequencies. Nanophotonics 2021, 10, 1495–1503. [Google Scholar] [CrossRef]
- Lim, Y.L.; Taimre, T.; Bertling, K.; Dean, P.; Indjin, D.; Valavanis, A.; Khanna, S.P.; Lachab, M.; Schaider, H.; Prow, T.W.; et al. High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry. Biomed. Opt. Express 2014, 5, 3981–3989. [Google Scholar] [CrossRef] [Green Version]
- Quotb, A.; Atashkhooei, R.; Magaletti, S.; Jayat, F.; Tronche, C.; Goechnahts, J.; Perchoux, J. Methods and Limits for Micro Scale Blood Vessel Flow Imaging in Scattering Media by Optical Feedback Interferometry: Application to Human Skin. Sensors 2021, 21, 1300. [Google Scholar] [CrossRef]
- Wheeler, C.B.; Fielding, S.J. Interferometry using a laser as radiation source, amplifier and detector. J. Phys. E Sci. Instrum. 1972, 5, 101–103. [Google Scholar] [CrossRef]
- Mitsuhashi, Y.; Morikawa, T.; Sakurai, K.; Seko, A.; Shimada, J. Self-coupled optical pickup. Opt. Commun. 1976, 17, 95–97. [Google Scholar] [CrossRef]
- Morikawa, T.; Mitsuhashi, Y.; Shimada, J.; Kojima, Y. Return-beam-induced oscillations in self-coupled semiconductor lasers. Electron. Lett. 1976, 12, 435–436. [Google Scholar] [CrossRef]
- Rakić, A.; Taimre, T.; Bertling, K.; Lim, Y.; Dean, P.; Valavanis, A.; Indjin, D. Sensing and imaging using laser feedback interferometry with quantum cascade lasers. Appl. Phys. Rev. 2019, 6, 021320. [Google Scholar] [CrossRef] [Green Version]
- Al Roumy, J.; Perchoux, J.; Lim, Y.L.; Taimre, T.; Rakić, A.D.; Bosch, T. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer. Appl. Opt. 2015, 54, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.L.; Bertling, K.; Taimre, T.; Gillespie, T.; Glenn, C.; Robinson, A.; Indjin, D.; Han, Y.; Li, L.; Linfield, E.H.; et al. Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers. Opt. Express 2019, 27, 10221–10233. [Google Scholar] [CrossRef]
- Keeley, J.; Bertling, K.; Rubino, P.L.; Lim, Y.L.; Taimre, T.; Qi, X.; Kundu, I.; Li, L.H.; Indjin, D.; Rakić, A.D.; et al. Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser. Opt. Lett. 2019, 44, 3314–3317. [Google Scholar] [CrossRef]
- Ruiz-Llata, M.; Lamela, H. Self-mixing technique for vibration measurements in a laser diode with multiple modes created by optical feedback. Appl. Opt. 2009, 48, 2915–2923. [Google Scholar] [CrossRef]
- Tucker, J.R.; Rakic, A.D.; Zvyagin, A.V.; O’Brien, C.J. The effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers. Appl. Opt. 2007, 46, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.; Freeman, J.; Bertling, K.; Lim, Y.L.; Mohandas, R.A.; Taimre, T.; Li, L.H.; Indjin, D.; Raki?, A.D.; Linfield, E.H.; et al. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry. Sci. Rep. 2017, 7, 7236. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.J.; Partington, J.; Chhantyal-Pun, R.; Henry, M.; Auriacombe, O.; Rawlings, T.; Li, L.H.; Keeley, J.; Oldfield, M.; Brewster, N.; et al. Gas spectroscopy through multimode self-mixing in a double-metal terahertz quantum cascade laser. Opt. Lett. 2018, 43, 5933–5936. [Google Scholar] [CrossRef]
- Petermann, K. Laser Diode Modulation and Noise; Kluwer: Alphen aan den Rijn, The Netherlands, 1991. [Google Scholar]
- Kane, D.M.K.; Shore, K.A. Unlocking Dynamic Diversity: Optical Feedback Effects on Semiconductor Lasers; Wiley: London, UK, 2008. [Google Scholar]
- Ohtsubo, K. Semiconductor Lasers: Stability, Instability and Chaos; Springer: New York, NY, USA, 2009; Volume 111. [Google Scholar]
- Tkach, R.; Chraplyvy, A.R. Regimes of feedback effects in 1.5-μm distributed feedback lasers. J. Lightwave Technol. 1986, 4, 1655–1661. [Google Scholar] [CrossRef]
- Donati, S.; Horng, R.H. The diagram of feedback regimes revisited. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1500309. [Google Scholar] [CrossRef]
- Schunk, N.; Petermann, K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron. 1988, 24, 1242–1247. [Google Scholar] [CrossRef]
- Plantier, G.; Bes, C.; Bosch, T. Behavioral model of a self-mixing laser diode sensor. IEEE J. Quantum Electron. 2005, 41, 1157–1167. [Google Scholar] [CrossRef]
- Ju, R.; Spencer, P.S. Dynamic regimes in semiconductor lasers subject to incoherent optical feedback. J. Lightwave Technol. 2005, 23, 2513–2523. [Google Scholar]
- Yu, Y.; Xi, J.; Chicharo, J.F.; Bosch, T.M. Optical feedback self-mixing interferometry with a large feedback factor: Behavior studies. IEEE J. Quantum Electron. 2009, 45, 840–848. [Google Scholar] [CrossRef]
- Aragoneses, A.; Sorrentino, T.; Perrone, S.; Gauthier, D.J.; Torrent, M.; Masoller, C. Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser. Opt. Express 2014, 22, 4705–4713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porte, X.; Soriano, M.C.; Fischer, I. Similarity properties in the dynamics of delayed-feedback semiconductor lasers. Phys. Rev. A 2014, 89, 023822. [Google Scholar] [CrossRef] [Green Version]
- Bernal, O.D.; Zabit, U.; Bosch, T. Classification of laser self-mixing interferometric signal under moderate feedback. Appl. Opt. 2014, 53, 702–708. [Google Scholar] [CrossRef] [Green Version]
- An, L.; Liu, B. Measuring parameters of laser self-mixing interferometry sensor based on back propagation neural network. Opt. Express 2022, 30, 19134–19144. [Google Scholar] [CrossRef]
- Pogna, E.A.A.; Silvestri, C.; Columbo, L.L.; Brambilla, M.; Scamarcio, G.; Vitiello, M.S. Terahertz near-field nanoscopy based on detectorless laser feedback interferometry under different feedback regimes. APL Photonics 2021, 6, 061302. [Google Scholar] [CrossRef]
- Ri, C.Y.; Kim, C.S.; Ri, G.C.; Kang, J.C.; Pak, C.M.; Jin-Myong, O. Evaluation method for the optical feedback factor and linewidth enhancement factor using phase discontinuities in self-mixing interferometry signals. Appl. Opt. 2020, 59, 687–693. [Google Scholar] [CrossRef]
- Attia, I.; Wohlgemuth, E.; Balciano, O.; Cohen, R.J.; Yoffe, Y.; Sadot, D. Laser linewidth characterization via self-homodyne measurement under nearly-coherent conditions. Opt. Express 2022, 30, 14492–14504. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.; Perchoux, J.; Mazoyer, T.; Imas, J.J.; Veng, M.; Jayat, F.; Tronche, C.; Bosch, T. Experimental demonstration of the impact of the fringe shape in sub-lambda/2 sensing with optical feedback interferometry. Appl. Opt. 2021, 60, 119–124. [Google Scholar] [CrossRef]
- Mezzapesa, F.P.; Columbo, L.L.; Brambilla, M.; Dabbicco, M.; Borri, S.; Vitiello, M.S.; Beere, H.E.; Ritchie, D.A.; Scamarcio, G. Intrinsic stability of quantum cascade lasers against optical feedback. Opt. Express 2013, 21, 13748–13757. [Google Scholar] [CrossRef] [PubMed]
- Columbo, L.L.; Brambilla, M. Multimode regimes in quantum cascade lasers with optical feedback. Opt. Express 2014, 22, 10105–10118. [Google Scholar] [CrossRef] [PubMed]
- Jumpertz, L.; Carras, M.; Schires, K.; Grillot, F. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers. Appl. Phys. Lett. 2014, 105, 131112. [Google Scholar] [CrossRef] [Green Version]
- Spitz, O.; Wu, J.; Carras, M.; Wong, C.W.; Grillot, F. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Phys. Lett. 2018, 15, 116201. [Google Scholar] [CrossRef] [Green Version]
- Spitz, O.; Wu, J.; Carras, M.; Wong, C.W.; Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep. 2019, 9, 4451. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Bertling, K.; Taimre, T.; Agnew, G.; Lim, Y.L.; Gillespie, T.; Demić, A.; Dean, P.; Li, L.H.; Linfield, E.H.; et al. Terahertz quantum cascade laser under optical feedback: Effects of laser self-pulsations on self-mixing signals. Opt. Express 2021, 29, 39885–39894. [Google Scholar] [CrossRef]
- Wang, X.G.; Wang, C. Non-linear dynamics modeling of quantum cascade lasers with tilted optical feedback. Int. Soc. Opt. Photon. 2022, 12141, 49–54. [Google Scholar] [CrossRef]
- Qi, X.; Bertling, K.; Taimre, T.; Agnew, G.; Lim, Y.L.; Gillespie, T.; Robinson, A.; Brünig, M.; Demić, A.; Dean, P.; et al. Observation of optical feedback dynamics in single-mode terahertz quantum cascade lasers: Transient instabilities. Phys. Rev. A 2021, 103, 033504. [Google Scholar] [CrossRef]
- Qi, X.; Bertling, K.; Taimre, T.; Lim, Y.L.; Gillespie, T.; Dean, P.; Li, L.H.; Linfield, E.H.; Davies, A.G.; Indjin, D.; et al. Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback. APL Photon. 2021, 6, 091301. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Juškaitis, R.; Rea, N.P.; Wilson, T. Semiconductor laser confocal microscopy. Appl. Opt. 1994, 33, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Margalit, S.; Harder, C.; Wilt, D.; Yariv, A. The intrinsic electrical equivalent circuit of a laser diode. IEEE J. Quantum Electron. 1981, 17, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, T.; Nara, M.; Mnatzakanian, S.; Lee, B.; Strand, T. Laser diode feedback interferometer for stabilization and displacement measurements. Appl. Opt. 1987, 26, 892–897. [Google Scholar] [CrossRef]
- Wang, W.; Grattan, K.T.; Palmer, A.; Boyle, W. Self-mixing interference inside a single-mode diode laser for optical sensing applications. J. Light. Technol. 1994, 12, 1577–1587. [Google Scholar] [CrossRef]
- Donati, S.; Falzoni, L.; Merlo, S. PC-interfaced, compact laser-diode feedback interferometer for displacement measurements. IEEE Trans. Instrum. Meas. 1996, 45, 942–944. [Google Scholar] [CrossRef]
- Columbo, L.; Brambilla, M.; Dabbicco, M.; Scamarcio, G. Self-mixing in multi-transverse mode semiconductor lasers: Model and potential application to multi-parametric sensing. Opt. Express 2012, 20, 6286–6305. [Google Scholar] [CrossRef]
- Kliese, R.; Taimre, T.; Bakar, A.; Lim, Y.L.; Bertling, K.; Nikolić, M.; Perchoux, J.; Bosch, T.; Rakić, A.D. Solving self-mixing equations for arbitrary feedback levels: A concise algorithm. Appl. Opt. 2014, 53, 3723–3736. [Google Scholar] [CrossRef] [Green Version]
- Webb, R.H.; Rogomentich, F.J. Microlaser microscope using self-detection for confocality. Opt. Lett. 1995, 20, 533. [Google Scholar] [CrossRef]
- Dean, P.; Lim, Y.L.; Valavanis, A.; Kliese, R.; Nikolić, M.; Khanna, S.P.; Lachab, M.; Indjin, D.; Ikonić, Z.; Harrison, P.; et al. Terahertz imaging through self-mixing in a quantum cascade laser. Opt. Lett. 2011, 36, 2587–2589. [Google Scholar] [CrossRef] [PubMed]
- Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Indjin, D.; Rakić, A.D. Methodology for materials analysis using swept-frequency feedback interferometry with terahertz frequency quantum cascade lasers. Opt. Express 2014, 22, 18633–18647. [Google Scholar] [CrossRef]
- Bertling, K.; Taimre, T.; Agnew, G.; Lim, Y.L.; Dean, P.; Indjin, D.; Höfling, S.; Weih, R.; Kamp, M.; von Edlinger, M.; et al. Simple Electrical Modulation Scheme for Laser Feedback Imaging. IEEE Sensors J. 2016, 16, 1937–1942. [Google Scholar] [CrossRef] [Green Version]
- Mourat, G.; Servagent, N.; Bosch, T. Optical feedback effects on the spectral linewidth of semiconductor laser sensors using self-mixing interference. IEEE J. Quantum Electron. 1998, 34, 1717–1721. [Google Scholar] [CrossRef]
- Matharu, R.; Perchoux, J.; Kliese, R.; Lim, Y.L.; Rakic, A.D. Maintaining maximum SNR in uncooled VCSEL-based self-mixing sensors. Opt. Lett. 2011, 36, 3690–3692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowla, A.; Nikolić, M.; Taimre, T.; Tucker, J.R.; Lim, Y.L.; Bertling, K.; Rakić, A.D. The Effect of the Optical System on the Doppler Spectrum in Laser Doppler Velocimetry. Appl. Opt. 2015, 54, 18–26. [Google Scholar] [CrossRef]
- Lim, Y.L.; Bertling, K.; Rio, P.; Tucker, J.R.; Rakic, A.D. Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect. In Photonics: Design, Technology, and Packaging; SPIE: Paris, France, 2006; Volume 6038, pp. 378–387. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertling, K.; Qi, X.; Taimre, T.; Lim, Y.L.; Rakić, A.D. Feedback Regimes of LFI Sensors: Experimental Investigations. Sensors 2022, 22, 9001. https://doi.org/10.3390/s22229001
Bertling K, Qi X, Taimre T, Lim YL, Rakić AD. Feedback Regimes of LFI Sensors: Experimental Investigations. Sensors. 2022; 22(22):9001. https://doi.org/10.3390/s22229001
Chicago/Turabian StyleBertling, Karl, Xiaoqiong Qi, Thomas Taimre, Yah Leng Lim, and Aleksandar D. Rakić. 2022. "Feedback Regimes of LFI Sensors: Experimental Investigations" Sensors 22, no. 22: 9001. https://doi.org/10.3390/s22229001
APA StyleBertling, K., Qi, X., Taimre, T., Lim, Y. L., & Rakić, A. D. (2022). Feedback Regimes of LFI Sensors: Experimental Investigations. Sensors, 22(22), 9001. https://doi.org/10.3390/s22229001