Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance
Abstract
:1. Introduction
2. Experimental Setup
2.1. Contactless Impedance Detection (CID) Sensor
2.2. Experimental Equipment
3. Experimental Results
3.1. Definition Statements
- (1)
- Calculate the mean value of the impedance signals of the channel full of water and standard deviation .
- (2)
- If one of the following conditions is satisfied, the impedance signal is the impedance signal corresponding to a slug.
3.2. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haase, S.; Murzin, D.Y.; Salmi, T. Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow. Chem. Eng. Res. Des. 2016, 113, 304–329. [Google Scholar]
- Kim, S.M.; Mudawar, I. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int. J. Heat Mass Transf. 2014, 77, 627–652. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Garimella, S.; Li, D.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier: Oxford, MS, USA, 2006. [Google Scholar]
- Mehendale, S.S.; Jacobi, A.M.; Shah, R.K. Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 2000, 53, 175–193. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Grande, W.J. Evolution of microchannel flow passages: Thermohydraulic performance and fabrication technology. Heat Transf. Eng. 2003, 24, 3–17. [Google Scholar] [CrossRef]
- Crowe, C.T. Multiphase Flow Handbook; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hetsroni, G. Handbook of Multiphase Systems; McGraw-Hill Book Company: New York, NY, USA, 1982. [Google Scholar]
- Baker, R.C. Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hewitt, G.F. Measurement of Two-Phase Flow Parameters; Academic Press: London, UK, 1978. [Google Scholar]
- Bertola, V. Modelling and Experimentation in Two-Phase Flow; Springer-Verlag Wien GmbH: Vienna, Austria, 2003. [Google Scholar]
- Falcone, G.; Hewitt, G.F. Multiphase Flow Metering; Elsevier Press: Oxford, UK, 2010. [Google Scholar]
- Bouyahiaoui, H.; Azzi, A.; Zeghloul, A.; Hasan, A.; Berrouk, A.S. Experimental investigation of a vertically downward two-phase air-water slug flow. J. Pet. Sci. Eng. 2018, 162, 12–21. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Jin, N.D.; Zhai, L.S.; Wang, D.Y.; Wang, F. Experimental study of slug and churn flows in a vertical pipe using plug-in optical fiber and conductance sensors. Exp. Therm. Fluid Sci. 2019, 107, 16–28. [Google Scholar] [CrossRef]
- Ide, H.; Kariyasaki, A.; Fukano, T. Fundamental data on the gas–liquid two-phase flow in minichannels. Int. J. Therm. Sci. 2007, 46, 519–530. [Google Scholar] [CrossRef]
- Zhang, M.H.; Pan, L.M.; He, H.; Yang, X.H.; Ishii, M. Experimental study of vertical co-current slug flow in terms of flow regime transition in relatively small diameter tubes. Int. J. Multiph. Flow 2018, 108, 140–155. [Google Scholar] [CrossRef]
- Huang, J.C.; Sheng, B.X.; Ji, H.F.; Huang, Z.Y.; Wang, B.L.; Li, H.Q. A New Contactless Bubble/Slug Velocity Measurement Method of Gas-Liquid Two-Phase Flow in Small Channels. IEEE Trans. Instrum. Meas. 2019, 68, 3253–3267. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.Y.; Wang, B.L.; Ji, H.F.; Li, H.Q. A new method for void fraction measurement of gas–liquid two-phase flow in millimeter-scale pipe. Int. J. Multiph. Flow 2015, 72, 298–305. [Google Scholar]
- Ji, H.F.; Chang, Y.; Huang, Z.Y.; Wang, B.L.; Li, H.Q. A new contactless impedance sensor for void fraction measurement of gas–liquid two-phase flow. Meas. Sci. Technol. 2016, 27, 124001. [Google Scholar] [CrossRef]
- Shi, X.W.; Tan, C.; Dong, F.; dos Santos, E.N.; da Silva, M.J. Conductance Sensors for Multiphase Flow Measurement: A Review. IEEE Sens. J. 2021, 21, 12913–12925. [Google Scholar] [CrossRef]
- Hauser, P.C.; Kuban, P. A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal. Chim. Acta 2008, 607, 15–29. [Google Scholar]
- Brito-Neto, J.G.A.; da Silva, J.A.F.; Blanes, L.; do Lago, C.L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals. Electroanalysis 2005, 17, 1198–1206. [Google Scholar] [CrossRef]
- Brito-Neto, J.G.A.; da Silva, J.A.F.; Blanes, L.; do Lago, C.L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics. Electroanalysis 2005, 17, 1207–1214. [Google Scholar] [CrossRef]
- Hauser, P.C.; Kuban, P. Capacitively coupled contactless conductivity detection for analytical techniques—Developments from 2018 to 2020. J. Chromatogr. A 2020, 1632, 461616. [Google Scholar] [CrossRef]
- Hauser, P.C.; Kuban, P. 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trac-Trends Anal. Chem. 2018, 102, 311–321. [Google Scholar]
- Mantim, T.; Hauser, P.C. Dual-Purpose Photometric-Conductivity Detector for Simultaneous and Sequential Measurements in Flow Analysis. Molecules 2020, 25, 2284. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ji, H.F.; Huang, Z.Y.; Wang, B.L.; Li, H.Q. Online measurement of conductivity/permittivity of fluid by a new contactless impedance sensor. Rev. Sci. Instrum. 2017, 88, 055111. [Google Scholar] [CrossRef]
- Guo, Z.W.; Huang, J.C.; Huang, Q.; Jiang, Y.D.; Ji, H.F.; Huang, Z.Y. New Contactless Velocity Measurement Sensor for Bubble/Slug Flow in Small Scale Pipes. IEEE Access 2020, 8, 198035–198046. [Google Scholar] [CrossRef]
- Huang, J.C.; Jiang, Y.D.; Ji, H.F.; Wang, B.L.; Huang, Z.Y. Electrical Impedance Characteristics of Slug Flow in Small Channels and its Application to Void fraction Estimation. Int. J. Multiph. Flow 2022, 156, 104200. [Google Scholar] [CrossRef]
- Li, Y.W.; Yang, Y.T.; Zhang, J.C. Theoretical Research on Output Response Characteristics of Vertical Longitudinal Multipole Conductance Sensor by Discrete Phase Distribution. Chem. Technol. Fuels Oils 2021, 57, 529–540. [Google Scholar] [CrossRef]
- Tan, C.; Wu, H.; Dong, F. Horizontal oil-water two-phase flow measurement with information fusion of conductance ring sensor and cone meter. Flow Meas. Instrum. 2013, 34, 83–90. [Google Scholar] [CrossRef]
- Zhai, L.S.; Bian, P.; Han, Y.F.; Gao, Z.K.; Jin, D.N.; Liu, X.B.; Xie, R.H.; Yu, L.N. The measurement of gas-liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe. Meas. Sci. Technol. 2016, 27, 045101. [Google Scholar] [CrossRef]
- Ji, H.F.; Lyu, Y.C.; Wang, B.L.; Huang, Z.Y.; Li, H.Q.; Yan, Y. An improved capacitively coupled contactless conductivity detection sensor for industrial applications. Sens. Actuators A 2015, 235, 273–280. [Google Scholar] [CrossRef]
- Chen, D.X.; Yang, W.Q.; Pan, M.C. Design of impedance measuring circuits based on phase-sensitive demodulation technique. IEEE Trans. Instrum. Meas. 2011, 60, 1276–1282. [Google Scholar] [CrossRef]
- Ren, X.C.; Liu, S. Experimental study of phase sensitive detection technique in ECT system. In Proceedings of the 2014 International Conference on Machine Learning and Cybernetics, Lanzhou, China, 13–16 July 2014; pp. 121–125. [Google Scholar]
Inter Diameter (mm) | Outer Diameter (mm) | Electrode Length (mm) | Electrode Spacing (mm) | |
---|---|---|---|---|
Prototype I | 1.96 | 3.94 | 20.07 | 10.05 |
Prototype II | 2.48 | 4.50 | 20.04 | 10.04 |
Prototype III | 3.02 | 4.98 | 20.05 | 10.03 |
Prototype IV | 3.54 | 5.48 | 20.04 | 10.00 |
Inter Diameter (mm) | (cm) | (cm) | (cm) | /i.d. | /i.d. | /i.d. |
---|---|---|---|---|---|---|
1.96 | 22 | 19 | 23 | 112 | 97 | 112 |
2.48 | 27 | 26 | 27 | 108 | 104 | 108 |
3.02 | 31 | 30 | 31 | 102 | 99 | 102 |
3.54 | 35 | 34 | 31 | 98 | 96 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Huang, J.; Ji, H.; Huang, Z. Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance. Sensors 2022, 22, 8987. https://doi.org/10.3390/s22228987
Wang C, Huang J, Ji H, Huang Z. Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance. Sensors. 2022; 22(22):8987. https://doi.org/10.3390/s22228987
Chicago/Turabian StyleWang, Chenxu, Junchao Huang, Haifeng Ji, and Zhiyao Huang. 2022. "Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance" Sensors 22, no. 22: 8987. https://doi.org/10.3390/s22228987
APA StyleWang, C., Huang, J., Ji, H., & Huang, Z. (2022). Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance. Sensors, 22(22), 8987. https://doi.org/10.3390/s22228987