Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. A Benchtop QCM System
2.3. Biochemical Reagents
2.4. Procedure for Antibody Immobilization, Salmonella Detection and Application of AuNPs
2.5. Acquisition of Frequency Data
2.6. Bacterial Strains and Culture Preparation
2.7. Scanning Electron Microscope (SEM)
3. Results
3.1. SEM Images
3.2. Real-Time Frequency Monitoring for Bacteria Tests
3.3. Specificity Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stavila, V.; Volponi, J.; Katzenmeyer, A.M.; Dixon, M.C.; Allendorf, M.D. Kinetics and mechanism of metal–organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 2012, 3, 1531–1540. [Google Scholar] [CrossRef]
- Wajid, A. On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions. Sens. Actuators A Phys. 1997, 63, 41–46. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Uno, T. Molecular imprinting strategy for solvent molecules and its application for QCM-based VOC vapor sensing. Sens. Actuators B Chem. 2006, 113, 94–99. [Google Scholar] [CrossRef]
- Tsortos, A.; Papadakis, G.; Gizeli, E. Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D. Biosens. Bioelectron. 2008, 24, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, J.; Xu, J. QCM formaldehyde sensing materials: Design and sensing mechanism. Sens. Actuators B Chem. 2019, 293, 71–82. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Hou, J. Repeatability and sensitivity of quartz crystal microbalance (QCM) sensor array modified with four sensitive materials. Mater. Sci. Semicond. Process. 2022, 147, 106764. [Google Scholar] [CrossRef]
- Muramatsu, H.; Kajiwara, K.; Tamiya, E.; Karube, I. Piezoelectric immuno sensor for the detection of Candida albicans microbes. Anal. Chim. Acta 1986, 188, 257–261. [Google Scholar] [CrossRef]
- Yilmaz, E.; Majidi, D.; Ozgur, E.; Denizli, A. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sens. Actuators B Chem. 2015, 209, 714–721. [Google Scholar] [CrossRef]
- Wachiralurpan, S.; Phung-On, I.; Chanlek, N.; Areekit, S.; Chansiri, K.; Lieberzeit, P.A. In-situ monitoring of real-time loop-mediated isothermal amplification with QCM: Detecting Listeria monocytogenes. Biosensors 2021, 11, 308. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Chen, F.; Jiang, T.; Wang, H.; Slavik, M.; Wei, H.; Li, Y. QCM-based aptamer selection and detection of Salmonella typhimurium. Food Chem. 2017, 221, 776–782. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Wang, R.; Li, Y.; Abi-Ghanem, D.; Berghman, L.; Hargis, B.; Lu, H. A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosens. Bioelectron. 2011, 26, 4146–4154. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, L.; Callaway, Z.T.; Lu, H.; Huang, T.J.; Li, Y. A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 2017, 240, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Dultsev, F.N.; Tronin, A.V. Rapid sensing of hepatitis B virus using QCM in the thickness shear mode. Sens. Actuators B Chem. 2015, 216, 1–5. [Google Scholar] [CrossRef]
- Ertekin, Ö.; Öztürk, S.; Öztürk, Z.Z. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element. Sensors 2016, 16, 1274. [Google Scholar] [CrossRef] [Green Version]
- Slavova, M.; Georgieva-Nikolova, R.; Nikolova, M.; Hadjiolova, R. Quartz crystal microbalance-based unlabeled immunosensor for the determination of aflatoxin B1. Bulg. Chem. Commun. 2016, 48, 689–693. [Google Scholar]
- Karczmarczyk, A.; Haupt, K.; Feller, K.-H. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Lipman, N.S.; Jackson, L.R.; Trudel, L.J.; Weis-Garcia, F. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR J. 2005, 46, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar]
- Safina, G.; van Lier, M.; Danielsson, B. Flow-injection assay of the pathogenic bacteria using lectin-based quartz crystal microbalance biosensor. Talanta 2008, 77, 468–472. [Google Scholar] [CrossRef]
- Olsen, E.V.; Pathirana, S.; Samoylov, A.; Barbaree, J.; Chin, B.; Neely, W.; Vodyanoy, V. Specific and selective biosensor for Salmonella and its detection in the environment. J. Microbiol. Methods 2003, 53, 273–285. [Google Scholar] [CrossRef]
- Reverté, L.; Prieto-Simón, B.; Campàs, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Su, X.-L.; Slavik, M.F.; Ying, Y.; Wang, J. QCM immunosensor with nanoparticle amplification for detection of Escherichia coli O157: H7. Sens. Instrum. Food Qual. Saf. 2007, 1, 161–168. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R.; Wang, Y.; Su, X.; Ying, Y.; Wang, J.; Li, Y. Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157: H7. Biosens. Bioelectron. 2011, 29, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Hewa, T.M.P.; Tannock, G.A.; Mainwaring, D.E.; Harrison, S.; Fecondo, J.V. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J. Virol. Methods 2009, 162, 14–21. [Google Scholar] [CrossRef]
- Kleo, K.; Kapp, A.; Ascher, L.; Lisdat, F. Detection of vaccinia virus DNA by quartz crystal microbalance. Anal. Biochem. 2011, 418, 260–266. [Google Scholar] [CrossRef]
- Pandey, L.M. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev. Proteom. 2020, 17, 425–432. [Google Scholar] [CrossRef]
- Sauerbrey, G. Use of quartz vibrator for weighting thin films on a microbalance. Z. Fur Phys. 1959, 155, 206–212. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Min, H.J.; Bae, E. Towards a field deployable pathogen detection system by quartz-crystal microbalance. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XIII, Online, 12–16 April 2021; p. 117540K. [Google Scholar]
- Holloway, A.F. Advanced Quartz Crystal Microbalance Techniques Applied to Calixarene Sensing Membranes. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2005. [Google Scholar]
- Andrews, W.H.; Jacobson, A.; Hammack, T. Bacteriological Analytical Manual (BAM) Chapter 5: Salmonella. Bacterial. Anal. Man.; US Food and Drug Administration: Washington, DC, USA, 2011. Available online: https://www.fda.gov/food/laboratory-methods-food/bam (accessed on 22 September 2022).
- Feng, P.; Weagant, S.D.; Grant, M.A.; Burkhardt, W.; Shellfish, M.; Water, B. (BAM) Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria; US Food and Drug Administration: Washington, DC, USA, 2002. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria (accessed on 22 September 2022).
- Hitchins, A.D.; Jinneman, K.; Chen, Y. (BAM) Chapter 10: Detection of Listeria Monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria Monocytogenes in Foods; US Food and Drug Administration: Washington, DC, USA, 2004. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration (accessed on 22 September 2022).
- Mao, X.; Yang, L.; Su, X.-L.; Li, Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157: H7. Biosens. Bioelectron. 2006, 21, 1178–1185. [Google Scholar] [CrossRef]
- Olsen, E.; Vainrub, A.; Vodyanoy, V. Acoustic wave (TSM) biosensors: Weighing bacteria. In Principles of Bacterial Detection Biosensors, Recognition Receptors and Microsystems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 255–298. [Google Scholar]
- Alexander, T.E.; Lozeau, L.D.; Camesano, T.A. QCM-D characterization of time-dependence of bacterial adhesion. Cell Surf. 2019, 5, 100024. [Google Scholar] [CrossRef] [PubMed]
- van der Westen, R.; Sharma, P.K.; De Raedt, H.; Vermue, I.; van der Mei, H.C.; Busscher, H.J. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin–Voigt and Maxwell models. Phys. Chem. Chem. Phys. 2017, 19, 25391–25400. [Google Scholar] [CrossRef]
- Triyana, K.; Sembiring, A.; Rianjanu, A.; Hidayat, S.N.; Riowirawan, R.; Julian, T.; Kusumaatmaja, A.; Santoso, I.; Roto, R. Chitosan-based quartz crystal microbalance for alcohol sensing. Electronics 2018, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Makhneva, E.; Farka, Z.; Skládal, P.; Zajíčková, L. Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sens. Actuators B Chem. 2018, 276, 447–455. [Google Scholar] [CrossRef]
- Shang, Y.; Ye, Q.; Cai, S.; Wu, Q.; Pang, R.; Yang, S.; Xiang, X.; Wang, C.; Zha, F.; Ding, Y. Loop-mediated isothermal amplification (LAMP) for rapid detection of Salmonella in foods based on new molecular targets. LWT 2021, 142, 110999. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Pang, L.; Fu, S.; Qin, X.; Chen, Q.; Man, C.; Jiang, Y. A novel fluorescent platform of DNA-stabilized silver nanoclusters based on exonuclease III amplification-assisted detection of Salmonella Typhimurium. Anal. Chim. Acta 2021, 1181, 338903. [Google Scholar] [CrossRef]
- Machado, I.; Garrido, V.; Hernandez, L.I.; Botero, J.; Bastida, N.; San-Roman, B.; Grilló, M.-J.; Hernandez, F.J. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes. Anal. Chim. Acta 2019, 1054, 157–166. [Google Scholar] [CrossRef]
- Niyomdecha, S.; Limbut, W.; Numnuam, A.; Kanatharana, P.; Charlermroj, R.; Karoonuthaisiri, N.; Thavarungkul, P. Phage-based capacitive biosensor for Salmonella detection. Talanta 2018, 188, 658–664. [Google Scholar] [CrossRef]
- Ly, T.N.; Park, S.; Park, S.J. Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sens. Actuators B: Chem. 2016, 237, 452–458. [Google Scholar] [CrossRef]
- Westcott, S.L.; Oldenburg, S.J.; Lee, T.R.; Halas, N.J. Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir 1998, 14, 5396–5401. [Google Scholar] [CrossRef]
- D’amour, J.; Stålgren, J.R.; Kanazawa, K.; Frank, C.; Rodahl, M.; Johannsmann, D. Capillary aging of the contacts between glass spheres and a quartz resonator surface. Phys. Rev. Lett. 2006, 96, 058301. [Google Scholar] [CrossRef] [PubMed]
- Pomorska, A.; Shchukin, D.; Hammond, R.; Cooper, M.A.; Grundmeier, G.; Johannsmann, D. Positive Frequency Shifts Observed Upon Adsorbing Micron-Sized Solid Objects to a Quartz Crystal Microbalance from the Liquid Phase. Anal. Chem. 2010, 82, 2237–2242. [Google Scholar] [CrossRef] [PubMed]
- Tarnapolsky, A.; Freger, V. Modeling QCM-D response to deposition and attachment of microparticles and living cells. Anal. Chem. 2018, 90, 13960–13968. [Google Scholar] [CrossRef] [PubMed]
Salmonella Concentration | Without AuNPs | Biotin Ab | With AuNPs | Total (B) | Percentage Change | |
---|---|---|---|---|---|---|
(A) | SD | |||||
−24.40 | 3.9 | −15.13 | −28.32 | −52.72 | 123.74 | |
−10.96 | 3 | −7.38 | −27.60 | −38.57 | 268.14 | |
−6.78 | 3.05 | −4.44 | −28.85 | −35.63 | 471.94 | |
−4.27 | 0.58 | −4.13 | −23.78 | −28.05 | 573.19 | |
Control (PBS) | −2.82 | −2.89 | −8.08 | −10.9 |
Non-Salmonella | Concentration | Average Frequency Shifts after Non-Salmonella | Total | |
---|---|---|---|---|
Without AuNPs | With AuNPs | |||
E. coli O157:H7 | −9.12 | 9.65 | 0.53 | |
Listeria monocytogenes | −7.96 | 28.33 | 20.37 | |
Listeria monocytogenes | −7.62 | −3.93 | −11.55 | |
Staphylococcus aureus | −7.2 | 4.92 | −2.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.J.; Mina, H.A.; Deering, A.J.; Robinson, J.P.; Bae, E. Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor. Sensors 2022, 22, 8928. https://doi.org/10.3390/s22228928
Min HJ, Mina HA, Deering AJ, Robinson JP, Bae E. Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor. Sensors. 2022; 22(22):8928. https://doi.org/10.3390/s22228928
Chicago/Turabian StyleMin, Hyun Jung, Hansel A. Mina, Amanda J. Deering, J. Paul Robinson, and Euiwon Bae. 2022. "Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor" Sensors 22, no. 22: 8928. https://doi.org/10.3390/s22228928
APA StyleMin, H. J., Mina, H. A., Deering, A. J., Robinson, J. P., & Bae, E. (2022). Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor. Sensors, 22(22), 8928. https://doi.org/10.3390/s22228928